Yasaman Bahri, Jonathan Kadmon, Jeffrey Pennington, S. Schoenholz, Jascha Narain Sohl-Dickstein, S. Ganguli
{"title":"Statistical Mechanics of Deep Learning","authors":"Yasaman Bahri, Jonathan Kadmon, Jeffrey Pennington, S. Schoenholz, Jascha Narain Sohl-Dickstein, S. Ganguli","doi":"10.1146/annurev-conmatphys-031119-050745","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-031119-050745","url":null,"abstract":"The recent striking success of deep neural networks in machine learning raises profound questions about the theoretical principles underlying their success. For example, what can such deep networks...","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"11 1","pages":"501-528"},"PeriodicalIF":22.6,"publicationDate":"2020-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-conmatphys-031119-050745","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48744557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Smart Responsive Polymers: Fundamentals and Design Principles","authors":"D. Mukherji, C. Marques, K. Kremer","doi":"10.1146/annurev-conmatphys-031119-050618","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-031119-050618","url":null,"abstract":"In this review, we summarize recent theoretical and computational developments in the field of smart responsive materials, together with complementary experimental data. A material is referred to as smart responsive when a slight change in external stimulus can drastically alter its structure, function, or stability. Because of this smart responsiveness, these systems are used for the design of advanced functional materials. The most characteristic properties of smart polymers are discussed, especially polymer properties in solvent mixtures. We show how multiscale simulation approaches can shed light on the intriguing experimental observations. Special emphasis is given to two symmetric phenomena: co-non-solvency and co-solvency. The first phenomenon is associated with the collapse of polymers in two miscible good solvents, whereas the latter is associated with the swelling of polymers in poor solvent mixtures. Furthermore, we discuss when the standard Flory–Huggins-type mean-field polymer theory can (or cannot) be applied to understand these complex solution properties. We also sketch a few examples to highlight possible future directions, that is, how smart polymer properties can be used for the design principles of advanced functional materials.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":" ","pages":""},"PeriodicalIF":22.6,"publicationDate":"2020-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-conmatphys-031119-050618","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46588979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bubbly and Buoyant Particle–Laden Turbulent Flows","authors":"V. Mathai, D. Lohse, Chao Sun","doi":"10.1146/annurev-conmatphys-031119-050637","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-031119-050637","url":null,"abstract":"Fluid turbulence is commonly associated with stronger drag, greater heat transfer, and more efficient mixing than in laminar flows. In many natural and industrial settings, turbulent liquid flows contain suspensions of dispersed bubbles and light particles. Recently, much attention has been devoted to understanding the behavior and underlying physics of such flows by use of both experiments and high-resolution direct numerical simulations. This review summarizes our present understanding of various phenomenological aspects of bubbly and buoyant particle–laden turbulent flows. We begin by discussing different dynamical regimes, including those of crossing trajectories and wake-induced oscillations of rising particles, and regimes in which bubbles and particles preferentially accumulate near walls or within vortical structures. We then address how certain paradigmatic turbulent flows, such as homogeneous isotropic turbulence, channel flow, Taylor–Couette turbulence, and thermally driven turbulence, are modified by the presence of these dispersed bubbles and buoyant particles. We end with a list of summary points and future research questions.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":" ","pages":""},"PeriodicalIF":22.6,"publicationDate":"2020-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-conmatphys-031119-050637","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49017690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Majorana Zero Modes in Networks of Cooper-Pair Boxes: Topologically Ordered States and Topological Quantum Computation","authors":"Y. Oreg, F. Oppen","doi":"10.1146/annurev-conmatphys-031218-013618","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-031218-013618","url":null,"abstract":"Recent experimental progress introduced devices that can combine topological superconductivity with Coulomb-blockade effects. Experiments with these devices have already provided additional evidence for Majorana zero modes in proximity-coupled semiconductor wires. They also stimulated numerous ideas for how to exploit interactions between Majorana zero modes generated by Coulomb charging effects in networks of Majorana wires. Coulomb effects promise to become a powerful tool in the quest for a topological quantum computer as well as for driving topological superconductors into topologically ordered insulating states. Here, we present a focused review of these recent developments, including discussions of recent experiments, designs of topological qubits, Majorana-based implementations of universal quantum computation, and topological quantum error correction. Motivated by the analogy between a qubit and a spin-1/2 degree of freedom, we also review how coupling between Cooper-pair boxes leads to emergent topologically ordered insulating phases.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":" ","pages":""},"PeriodicalIF":22.6,"publicationDate":"2020-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-conmatphys-031218-013618","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47123063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Topographic Mechanics and Applications of Liquid Crystalline Solids","authors":"M. Warner","doi":"10.1146/annurev-conmatphys-031119-050738","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-031119-050738","url":null,"abstract":"Liquid crystal elastomers and glasses suffer huge length changes on heating, illumination, exposure to humidity, etc. A challenge is to program these changes to give a complex mechanical response for micromachines and soft robotics. Also desirable can be strong response, where bend is avoided in favor of stretch and compression, even in the slender shells that are our subject. A new mechanics paradigm arises from such materials—spatially programmed anisotropy allows a spatially varying metric to develop upon stimulation, with evolving Gaussian curvature, topography changes, and superstrong actuation. We call this metric mechanics or topographical mechanics. Thus programmed, liquid crystalline solids meet the above aims. A frontier is the complete programming and control of topography, driving both Gaussian and mean curvature evolution. That, and smart shells, which sense and self-regulate, and exotic new realizations of anisotropic responsive structures, are our concluding themes.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":" ","pages":""},"PeriodicalIF":22.6,"publicationDate":"2020-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-conmatphys-031119-050738","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49345376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Matchmaking Between Condensed Matter and Quantum Foundations, and Other Stories: My Six Decades in Physics","authors":"A. Leggett","doi":"10.1146/annurev-conmatphys-031119-050704","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-031119-050704","url":null,"abstract":"I present some rather selective reminiscences of my long career in physics, from my doctoral work to the present. I do not spend time on topics such as the nuclear magnetic resonance behavior of 3He, as I have reviewed the history extensively elsewhere, but rather concentrate, first, on my long-running project to make condensed matter physics relevant to questions in the foundations of quantum mechanics, and second, on various rather “quirky” problems such as an attempt to amplify the effects of the parity violation due to the weak interaction to a macroscopic level, and an unconventional proposal for the mechanism of the first-order phase transition between the A and B phases of superfluid liquid 3He.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":" ","pages":""},"PeriodicalIF":22.6,"publicationDate":"2020-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-conmatphys-031119-050704","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46835377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dry Aligning Dilute Active Matter","authors":"H. Chaté","doi":"10.1146/annurev-conmatphys-031119-050752","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-031119-050752","url":null,"abstract":"Active matter physics is about systems in which energy is dissipated at some local level to produce work. This is a generic situation, particularly in the living world but not only. What is at stake is the understanding of the fascinating, sometimes counterintuitive, emerging phenomena observed, from collective motion in animal groups to in vitro dynamical self-organization of motor proteins and biofilaments. Dry aligning dilute active matter (DADAM) is a corner of the multidimensional, fast-growing domain of active matter that has both historical and theoretical importance for the entire field. This restrictive setting only involves self-propulsion/activity, alignment, and noise, yet unexpected collective properties can emerge from it. This review provides a personal but synthetic and coherent overview of DADAM, focusing on the collective-level phenomenology of simple active particle models representing basic classes of systems and on the solutions of the continuous hydrodynamic theories that can be derived from them. The obvious fact that orientational order is advected by the aligning active particles at play is shown to be at the root of the most striking properties of DADAM systems: ( a) direct transitions to orientational order are not observed; ( b) instead generic phase separation occurs with a coexistence phase involving inhomogeneous nonlinear structures; ( c) orientational order, which can be long range even in two dimensions, is accompanied by long-range correlations and anomalous fluctuations; ( d) defects are not point-like, topologically bound objects.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":" ","pages":""},"PeriodicalIF":22.6,"publicationDate":"2020-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-conmatphys-031119-050752","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42110506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shiladitya Banerjee, Margaret L Gardel, Ulrich S Schwarz
{"title":"The Actin Cytoskeleton as an Active Adaptive Material.","authors":"Shiladitya Banerjee, Margaret L Gardel, Ulrich S Schwarz","doi":"10.1146/annurev-conmatphys-031218-013231","DOIUrl":"10.1146/annurev-conmatphys-031218-013231","url":null,"abstract":"<p><p>Actin is the main protein used by biological cells to adapt their structure and mechanics to their needs. Cellular adaptation is made possible by molecular processes that strongly depend on mechanics. The actin cytoskeleton is also an active material that continuously consumes energy. This allows for dynamical processes that are possible only out of equilibrium and opens up the possibility for multiple layers of control that have evolved around this single protein.Here we discuss the actin cytoskeleton from the viewpoint of physics as an active adaptive material that can build structures superior to man-made soft matter systems. Not only can actin be used to build different network architectures on demand and in an adaptive manner, but it also exhibits the dynamical properties of feedback systems, like excitability, bistability, or oscillations. Therefore, it is a prime example of how biology couples physical structure and information flow and a role model for biology-inspired metamaterials.</p>","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"11 1","pages":"421-439"},"PeriodicalIF":14.3,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7748259/pdf/nihms-1648253.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38733491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ezequiel Ferrero, L. Foini, T. Giamarchi, A. Kolton, A. Rosso
{"title":"Creep Motion of Elastic Interfaces Driven in a Disordered Landscape","authors":"Ezequiel Ferrero, L. Foini, T. Giamarchi, A. Kolton, A. Rosso","doi":"10.1146/ANNUREV-CONMATPHYS-031119-050725","DOIUrl":"https://doi.org/10.1146/ANNUREV-CONMATPHYS-031119-050725","url":null,"abstract":"The thermally activated creep motion of an elastic interface weakly driven on a disordered landscape is one of the best examples of glassy universal dynamics. Its understanding has evolved over the past 30 years thanks to a fruitful interplay among elegant scaling arguments, sophisticated analytical calculations, efficient optimization algorithms, and creative experiments. In this article, starting from the pioneer arguments, we review the main theoretical and experimental results that lead to the current physical picture of the creep regime. In particular, we discuss recent works unveiling the collective nature of such ultraslow motion in terms of elementary activated events. We show that these events control the mean velocity of the interface and cluster into “creep avalanches” statistically similar to the deterministic avalanches observed at the depinning critical threshold. The associated spatiotemporal patterns of activated events have been recently observed in experiments with magnetic domain walls. The emergent physical picture is expected to be relevant for a large family of disordered systems presenting thermally activated dynamics.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":" ","pages":""},"PeriodicalIF":22.6,"publicationDate":"2020-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42084924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Self-Propelled Rods: Insights and Perspectives for Active Matter","authors":"M. Bar, R. Großmann, S. Heidenreich, F. Peruani","doi":"10.1146/annurev-conmatphys-031119-050611","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-031119-050611","url":null,"abstract":"A wide range of experimental systems including gliding, swarming and swimming bacteria, in vitro motility assays, and shaken granular media are commonly described as self-propelled rods. Large ensembles of those entities display a large variety of self-organized, collective phenomena, including the formation of moving polar clusters, polar and nematic dynamic bands, mobility-induced phase separation, topological defects, and mesoscale turbulence, among others. Here, we give a brief survey of experimental observations and review the theoretical description of self-propelled rods. Our focus is on the emergent pattern formation of ensembles of dry self-propelled rods governed by short-ranged, contact mediated interactions and their wet counterparts that are also subject to long-ranged hydrodynamic flows. Altogether, self-propelled rods provide an overarching theme covering many aspects of active matter containing well-explored limiting cases. Their collective behavior not only bridges the well-studied regimes of polar self-propelled particles and active nematics, and includes active phase separation, but also reveals a rich variety of new patterns.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":" ","pages":""},"PeriodicalIF":22.6,"publicationDate":"2019-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-conmatphys-031119-050611","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45746658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}