Shock WavesPub Date : 2023-08-21DOI: 10.1007/s00193-023-01143-4
B. Jang, K. Kim, G. Park
{"title":"Drag and rolling moment measurements using accelerometer-based force balance in a shock tunnel","authors":"B. Jang, K. Kim, G. Park","doi":"10.1007/s00193-023-01143-4","DOIUrl":"10.1007/s00193-023-01143-4","url":null,"abstract":"<div><p>A multicomponent force balance was designed to measure the drag and rolling moment using an accelerometer-based technique. The force balance system used a linear ball bush as a new model mount system to minimize the constraint of the test model motion in both the axial and rotational directions. The accelerations of the test model were measured in the axial and rotational directions using accelerometers that were externally mounted on the test model. The drag and rolling moment were recovered from the measured accelerations using the system response functions, which included the dynamic characteristics of the force balance system. The system response functions were determined from the force balance calibration processes by applying a series of point loads in the axial and rotational directions and deconvolving the resulting accelerations. The drag and rolling moment measurements on the wedge model, including the flaps, were performed in a shock tunnel with a test time of approximately 3 ms at a nominal freestream Mach number of 6. A computational fluid dynamics (CFD) analysis assuming a laminar boundary layer was performed. Good agreement was obtained between the measured and calculated results. An uncertainty analysis of the measurements was conducted with regard to the influence of the fundamental properties of the test condition and force balance system.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6713793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shock WavesPub Date : 2023-08-02DOI: 10.1007/s00193-023-01139-0
F. Virot, G. Tymen, D. Hébert, J.-L. Rullier, E. Lescoute
{"title":"Experimental investigation of the interaction between a water droplet and a shock wave above Mach 4","authors":"F. Virot, G. Tymen, D. Hébert, J.-L. Rullier, E. Lescoute","doi":"10.1007/s00193-023-01139-0","DOIUrl":"10.1007/s00193-023-01139-0","url":null,"abstract":"<div><p>Experimental results on the interactions between a single water droplet and a shock wave propagating at Mach number above 4 are presented in this paper. A detonation-driven shock-tube test facility is used to work within a Mach range at <span>({M}=4.3)</span> (high-supersonic regime) and <span>({M}=10.6)</span> (hypersonic regime), for which the maximum studied dimensionless times <i>T</i> are up to 9.4 and 5.5, respectively. For both Mach ranges, the initial droplet diameters typically vary between 430 and 860 <span>(upmu hbox {m})</span> and the associated Weber numbers vary from <span>(5 times 10^{4})</span> to <span>(11 times 10^{4})</span>. Ultra-high-speed cameras are used to record the evolution of the water droplet when the shock wave impacts it. Until <span>({T} approx 2.5)</span>, the qualitative and quantitative analyses of our frames show that the initial diameter as well as the Mach number studied have an apparent weak influence on the droplet dimensionless displacement. Beyond this time, the results for <span>({M}=10.6)</span> are more dispersed than the data for <span>({M}=4.3)</span> revealing a possible effect of the droplet size. One of the main results of this paper is that the droplet disappearance occurs at <span>({T}=[4.5)</span>–5.5] for <span>({M}=10.6)</span>, while some mist is still present at <span>({T}>9)</span> for <span>({M}=4.3)</span>. We note also that the droplet is always supersonic for <span>({M}=10.6)</span> whereas it becomes subsonic at <span>({T}approx 3.5)</span> for <span>({M}=4.3)</span>.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6713769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shock WavesPub Date : 2023-07-24DOI: 10.1007/s00193-023-01140-7
M. Mollakouchakian, M. D. Emami
{"title":"Development of governing equations for mixing shocks in two-phase flows","authors":"M. Mollakouchakian, M. D. Emami","doi":"10.1007/s00193-023-01140-7","DOIUrl":"10.1007/s00193-023-01140-7","url":null,"abstract":"<div><p>An important phenomenon in the gas–liquid two-phase mixtures is a sudden change in the flow that may lead to transition of the flow regime from non-homogeneous slip flow to homogenous flow. This phenomenon is called <i>mixing shock</i> and has been investigated by several researchers. In the present paper, a more comprehensive model is proposed by including the entrainment ratio in the governing equations. Moreover, parametric studies are performed to assess the importance of this parameter in different conditions. The results of the present study indicate that at Euler numbers less than four the effect of gas mass flow is insignificant. However, at higher Euler numbers the differences of the present and previous models are noticeable. Since two possible solutions for the aftershock state exist, four criteria—entropy change across the shock, possibility of an expansion shock, positivity of the Euler number, and choking flow condition—are considered to identify the correct solution. The results indicate that the flow after the shock could only be of a subsonic type, and the mixing shock is compressive. A comparison of the possible realizable zones for the developed model and the previous models indicates that the developed model predicts a larger area for the realizable solution of the mixing shock. A comparison between analytical results and experimental data shows that the developed model predicts reasonable results.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4938431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shock WavesPub Date : 2023-06-26DOI: 10.1007/s00193-023-01137-2
Q. Liu, Y. F. Xu, S. C. Hu, Y. X. Li, Y. Cai, S. N. Luo
{"title":"Multiple elastic shock waves in cubic single crystals","authors":"Q. Liu, Y. F. Xu, S. C. Hu, Y. X. Li, Y. Cai, S. N. Luo","doi":"10.1007/s00193-023-01137-2","DOIUrl":"10.1007/s00193-023-01137-2","url":null,"abstract":"<div><p>Multiple elastic shock waves carry the information on elastic properties under dynamic extreme conditions, but may complicate the interpretation of wave structure including the elastic–plastic transition. On the basis of the acoustic wave-equation analysis, we predict the absence or presence of multiple elastic shock waves in a single crystal subjected to shock loading along a specific crystallographic orientation. Typical FCC and BCC single crystals are taken as validation and application cases. Large-scale molecular dynamics simulations are performed for Cu and Ta; double-wave or triple-wave structures of elastic shock waves (quasilongitudinal and quasitransverse) are observed in the simulations, and the multi-wave structures are in excellent agreement with the wave-equation analysis. Also, the acoustic wave-equation analysis is used to analyze MD calculations, as well as the complex structure of the shock wave during plastic deformation. Free-surface velocity history, transverse velocity history of free surface, and ultrafast X-ray diffraction are explored as experimental means to resolve multiple elastic shock waves.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00193-023-01137-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5008683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shock WavesPub Date : 2023-06-19DOI: 10.1007/s00193-023-01134-5
K. P. Chatelain, S. B. Rojas Chavez, J. Vargas, D. A. Lacoste
{"title":"Towards laser-induced fluorescence of nitric oxide in detonation","authors":"K. P. Chatelain, S. B. Rojas Chavez, J. Vargas, D. A. Lacoste","doi":"10.1007/s00193-023-01134-5","DOIUrl":"10.1007/s00193-023-01134-5","url":null,"abstract":"<div><p>This study aims to validate the new developments in our in-house spectroscopic code (KAT-LIF) to perform NO-LIF simulations for detonation conditions, as well as evaluating the capabilities of the NO-LIF diagnostic for characterizing H<span>(_2)</span>-air detonations. This objective was achieved in several steps. First, our in-house spectroscopic tool, KAT-LIF, was updated to perform NO-LIF simulations by notably developing a database of NO(A-X) transitions, currently unavailable in conventional spectroscopic databases, as well as collecting and implementing species-specific line broadening, line shifting, and quenching parameters for NO-LIF. Second, the validation of KAT-LIF was performed by comparing the simulation results with pre-existing simulation tools (LIFSim and LIFBASE) and experimental NO-LIF measurements in a laminar CH<span>(_4)</span>-air flame and H<span>(_2)</span>-air detonation. The validation results present satisfactory agreement of KAT-LIF and other simulation tools (LIFBASE, LIFSim) with experimental results for several conditions. For example, less than 20% discrepancy between the simulated and experimental NO-LIF profiles is observed for stoichiometric H<span>(_2)</span>-air detonation, initially at 20 kPa and 293 K. Third, qualitative and quantitative capabilities of the NO-LIF technique for detonation characterization are discussed, which include: shock detection, induction zone length measurements, and quantitative number density measurements.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4759297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shock WavesPub Date : 2023-06-16DOI: 10.1007/s00193-023-01135-4
R. Gavart, S. Trélat, M.-O. Sturtzer, N. Chaumeix
{"title":"A two-scale approach to widen a predictive blast propagation model around a hemicylindrical obstacle","authors":"R. Gavart, S. Trélat, M.-O. Sturtzer, N. Chaumeix","doi":"10.1007/s00193-023-01135-4","DOIUrl":"10.1007/s00193-023-01135-4","url":null,"abstract":"<div><p>The aim of the present paper was to report on an experimental study of the characterization of a blast wave initiated by a solid explosive and its interaction with a rigid obstacle in the form of a hemicylinder. Pressure transducers located along the path of the blast wave and high-speed imaging allow (1) the measurement of the overpressure at different locations and (2) the characterization of the blast wave inception, propagation, and reflection off the hemicylinder. The scaling effect has been investigated by performing experiments in two different facilities, where one is at twice the scale of the other.\u0000</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00193-023-01135-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4942725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shock WavesPub Date : 2023-06-07DOI: 10.1007/s00193-023-01138-1
G. Ciccarelli
{"title":"Selected topics from the 28th International Colloquium on the Dynamics of Explosions and Reactive Systems, Naples, Italy, June 19–24, 2022","authors":"G. Ciccarelli","doi":"10.1007/s00193-023-01138-1","DOIUrl":"10.1007/s00193-023-01138-1","url":null,"abstract":"","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00193-023-01138-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4627805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shock WavesPub Date : 2023-05-27DOI: 10.1007/s00193-023-01133-6
K. Ishii, K. Ohno, H. Kawana, K. Kawasaki, A. K. Hayashi, N. Tsuboi
{"title":"Operation characteristics of a disk-type rotating detonation engine","authors":"K. Ishii, K. Ohno, H. Kawana, K. Kawasaki, A. K. Hayashi, N. Tsuboi","doi":"10.1007/s00193-023-01133-6","DOIUrl":"10.1007/s00193-023-01133-6","url":null,"abstract":"<div><p>In the present work, operation characteristics of a disk-type rotating detonation engine (DRDE) with a constant chamber area were experimentally studied for various total mass flow rates and a wide variety of equivalence ratios of hydrogen–air mixtures. From the direct visualizations, the rotating detonation wave was found to propagate near the outer wall of the combustion chamber, regardless of the wave mode. For the present test conditions, single- and double-wave modes are observed, depending on the equivalence ratio of the mixture. The pressure gain was evaluated based on a one-dimensional flow model together with the chamber static pressure measured with the capillary tube average pressure technique. Although the present DRDE configuration provided a negative pressure gain for all the test conditions, it was found that the single-wave mode was superior to the double-wave mode in terms of the pressure gain.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00193-023-01133-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5054459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shock WavesPub Date : 2023-05-23DOI: 10.1007/s00193-023-01130-9
J. Caravaca-Vilchez, K. A. Heufer
{"title":"New insights into the pre-ignition behavior of methane behind reflected shock waves","authors":"J. Caravaca-Vilchez, K. A. Heufer","doi":"10.1007/s00193-023-01130-9","DOIUrl":"10.1007/s00193-023-01130-9","url":null,"abstract":"<div><p>Pre-ignition is an undesired combustion event known to restrict kinetic modeling validation. Previous methane oxidation studies reported premature ignition as part of ignition delay time measurements in shock tubes. In this context, the effect on the pre-ignition propensity and auto-ignition behavior of stoichiometric methane mixtures at different dilution levels of <span>(hbox {N}_2)</span>, Ar, He, and <span>(hbox {CO}_2)</span> was studied at 10 bar and 25 bar and temperatures between 1080 K and 1350 K. In addition to conventional sidewall pressure and endwall light emission measurements, a high-speed imaging setup was utilized to visualize the ignition process. Relevant physicochemical parameters to describe and predict the pre-ignition phenomenon were used. The results suggest that dilution levels up to <span>(80%)</span> of bath gas are not successful in mitigating early ignition occurrence and its effects at moderate pressures. Replacing <span>(hbox {N}_2)</span> by He was found to suppress early ignition at 10 bar, attributed to an enhanced dissipation of temperature inhomogeneities in the test gas section. The present findings demonstrate that <span>(hbox {CO}_2)</span> has potential for pre-ignition heat release mitigation, while Ar was confirmed to promote premature ignition. To the best of our knowledge, we present the first detailed study on pre-ignition mitigation for methane mixtures in shock tubes, where further insights into its ignition non-idealities are given.\u0000</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00193-023-01130-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4905285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shock WavesPub Date : 2023-05-23DOI: 10.1007/s00193-023-01132-7
S. Salauddin, A. J. Morales, R. Hytovick, R. Burke, V. Malik, J. Patten, S. Schroeder, K. A. Ahmed
{"title":"Detonation and shock-induced breakup characteristics of RP-2 liquid droplets","authors":"S. Salauddin, A. J. Morales, R. Hytovick, R. Burke, V. Malik, J. Patten, S. Schroeder, K. A. Ahmed","doi":"10.1007/s00193-023-01132-7","DOIUrl":"10.1007/s00193-023-01132-7","url":null,"abstract":"<div><p>The deformation and breakup characteristics of liquid rocket propellant 2 (RP-2) droplets are experimentally investigated in a shock tube. The RP-2 droplets are subjected to a weak shock wave, a strong shock, and a detonation wave to deduce the impacts of high-speed and supersonic reacting flows on droplet deformation and breakup. High-speed shadowgraph and schlieren imaging techniques are employed to characterize droplet morphologies, deformation rates, and displacement of the droplet centroid. The results reveal that the transition from a shock wave to a detonation suppresses the deformation of the droplet and augments small-scale breakup. A shift in dominant breakup mechanisms is linked to a significant increase in the Weber number due to an increase in flow velocities and temperatures when transitioning to the detonation case. The experimental data are combined with a droplet stability analysis to predict the “child” (or fragments of the initial “parent” droplet) droplet sizes of each test condition. The child droplet size is shown to decrease as the flow regime transitions toward a detonation. An analytical mass stripping model was also used to determine that the total mass stripped from the parent droplet increased when approaching supersonic reacting conditions. The child droplet sizes and mass stripping rate will ultimately influence evaporation timescales and ignition in supersonic reacting flows, which is important for the development of detonation-based propulsion and power systems.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00193-023-01132-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4902288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}