AIMS Neuroscience最新文献

筛选
英文 中文
Brain-derived neurotrophic factor (BDNF) in schizophrenia research: a quantitative review and future directions. 脑源性神经营养因子(BDNF)在精神分裂症研究中的定量回顾及未来发展方向。
IF 2.7
AIMS Neuroscience Pub Date : 2023-01-01 DOI: 10.3934/Neuroscience.2023002
Rozaziana Ahmad, Khairunnuur Fairuz Azman, Rosliza Yahaya, Nazlahshaniza Shafin, Norsuhana Omar, Asma Hayati Ahmad, Rahimah Zakaria, Adi Wijaya, Zahiruddin Othman
{"title":"Brain-derived neurotrophic factor (BDNF) in schizophrenia research: a quantitative review and future directions.","authors":"Rozaziana Ahmad,&nbsp;Khairunnuur Fairuz Azman,&nbsp;Rosliza Yahaya,&nbsp;Nazlahshaniza Shafin,&nbsp;Norsuhana Omar,&nbsp;Asma Hayati Ahmad,&nbsp;Rahimah Zakaria,&nbsp;Adi Wijaya,&nbsp;Zahiruddin Othman","doi":"10.3934/Neuroscience.2023002","DOIUrl":"https://doi.org/10.3934/Neuroscience.2023002","url":null,"abstract":"<p><p>This review aims to perform a bibliometric analysis of the research related to brain-derived neurotrophic factor (BDNF) in schizophrenia and offer suggestions for further work. Based on the keywords used, our study retrieved 335 documents for further analysis using a combination of three bibliometric techniques: co-word analysis, document co-citation analysis, and bibliographic coupling. A general rising trend in the number of publications was found in BDNF and schizophrenia research. Researchers from China and the United States have mostly researched BDNF and schizophrenia. Molecular Psychiatry is the most prestigious journal in the field of BDNF and schizophrenia research. The main topics and important research areas are cognition and the involvement of BDNF as a neurobiological marker (pathogenesis, therapy monitoring, and risk factors). Future research is anticipated to concentrate on relevant subjects, such as factors that affect BDNF levels or are connected to BDNF dysfunction in schizophrenia, as well as animal models of schizophrenia, in addition to cognition in schizophrenia.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"10 1","pages":"5-32"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10106337/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9383975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Whole body vibration therapy and cognitive functions: a systematic review. 全身振动疗法与认知功能:系统综述。
IF 2.7
AIMS Neuroscience Pub Date : 2023-01-01 DOI: 10.3934/Neuroscience.2023010
Nisha Shantakumari, Musaab Ahmed
{"title":"Whole body vibration therapy and cognitive functions: a systematic review.","authors":"Nisha Shantakumari,&nbsp;Musaab Ahmed","doi":"10.3934/Neuroscience.2023010","DOIUrl":"https://doi.org/10.3934/Neuroscience.2023010","url":null,"abstract":"<p><p>Whole Body Vibration has been found to induce physiological changes in human subjects, improving their neuromuscular, respiratory and cardiovascular functions. Evidence from animal research prove that whole-body vibration appears to induce changes in molecular and cellular levels to alter cognitive functions in mice. There is evolving evidence for a potential value of whole body vibration in improving cognition and preventing the development of age-related cognitive disorders in humans. However, literature on the biological consequences of whole-body vibration on the human brain is scanty. If so, gathering the available evidences would help decide the possibility of designing appropriate whole-body vibration protocols to extend its application to induce neurocognitive enhancement and optimize its effects. Therefore, a systematic review of the literature was performed, consulting the ProQuest, MEDLINE and Scopus bibliographic databases, to summarize the available scientific evidence on the effects of whole-body vibration on cognitive functions in adults. Results of the review suggest that whole-body vibration therapy enhances a wide spectrum of cognitive functions in adults although there isn't enough evidence available yet to be able to design a standardized protocol to achieve optimum cognitive enhancement.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"10 2","pages":"130-143"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10323263/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10187517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Protocol for a systematic review of the effects of gardening physical activity on neuroplasticity and cognitive function. 园艺体育活动对神经可塑性和认知功能影响的系统评价方案。
IF 2.7
AIMS Neuroscience Pub Date : 2023-01-01 DOI: 10.3934/Neuroscience.2023009
Antonio G Lentoor, Tiro B Motsamai, Thandokuhle Nxiweni, Bongumusa Mdletshe, Siyasanga Mdingi
{"title":"Protocol for a systematic review of the effects of gardening physical activity on neuroplasticity and cognitive function.","authors":"Antonio G Lentoor,&nbsp;Tiro B Motsamai,&nbsp;Thandokuhle Nxiweni,&nbsp;Bongumusa Mdletshe,&nbsp;Siyasanga Mdingi","doi":"10.3934/Neuroscience.2023009","DOIUrl":"https://doi.org/10.3934/Neuroscience.2023009","url":null,"abstract":"<p><strong>Background: </strong>The beneficial effects of gardening as a form of physical activity have garnered growing interest in recent years. Existing research suggests that physical activity enhances brain function through modifying synaptic plasticity, growth factor synthesis, and neurogenesis. Gardening physical activity is a promising, cost-effective, non-invasive intervention that can easily be augmented in the rehabilitation of neurodegenerative conditions. However, there is still insufficient literature. This protocol describes a systematic review to be conducted of scientific literature on the benefits of gardening as a physical activity that can promote neuroplasticity and improve cognitive function. This information can be useful as an intervention for persons who experience cognitive impairment brought on by cancer and chemotherapy in developing countries such as South Africa where there is real need to access cognitive rehabilitation.</p><p><strong>Methods and analysis: </strong>The systematic review strategy will be conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. An electronic literature database search of MEDLINE (PubMed), Embase, Scopus, Cochrane Central Register of Controlled Trials (CENTRAL), and Web of Science will be carried out using medical search terms (MeSH), with English as the only permitted language, during the time period of January 2010 to December 2022. We will search for and review studies on how gardening as a physical activity impacts neuroplasticity and cognition. Two reviewers will read the titles, and abstracts and full text of the studies identified during the search to exclude records that do not meet the inclusion criteria. Data will then be extracted from the remaining studies. Any differences in opinion arising between the reviewers during the procedure will be resolved through discussion with a third reviewer. The Joanna Briggs Institute (JBI) Critical Appraisal Tool checklist will be utilized independently by two reviewers to evaluate the possibility of bias. The included articles will be subjected to narrative synthesis, with the results being presented in a thematic manner.</p><p><strong>Ethics and dissemination: </strong>There are no need for ethical approval because no patient data will be gathered. The results will be disseminated through an open-access peer-reviewed indexed journal, presented scientific meetings.PROSPERO registration number: CRD42023394493.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"10 2","pages":"118-129"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10323255/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10187518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacterial meningitis-induced demyelination: A logical fallacy or groundbreaking avenue in neuroscience? 细菌性脑膜炎引起的脱髓鞘:逻辑谬误还是神经科学的开创性途径?
IF 2.7
AIMS Neuroscience Pub Date : 2023-01-01 DOI: 10.3934/Neuroscience.2023013
Tjokorda Istri Pramitasuri, Ni Made Susilawathi, Aa Raka Sudewi
{"title":"Bacterial meningitis-induced demyelination: A logical fallacy or groundbreaking avenue in neuroscience?","authors":"Tjokorda Istri Pramitasuri,&nbsp;Ni Made Susilawathi,&nbsp;Aa Raka Sudewi","doi":"10.3934/Neuroscience.2023013","DOIUrl":"https://doi.org/10.3934/Neuroscience.2023013","url":null,"abstract":"<jats:p xml:lang=\"fr\" />","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"10 2","pages":"172-174"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10323260/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9811182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of familiarity on neural tracking of music stimuli is modulated by mind wandering 熟悉度对音乐刺激神经跟踪的影响是由走神调节的
AIMS Neuroscience Pub Date : 2023-01-01 DOI: 10.3934/neuroscience.2023025
Joan Belo, Maureen Clerc, Daniele Schön
{"title":"The effect of familiarity on neural tracking of music stimuli is modulated by mind wandering","authors":"Joan Belo, Maureen Clerc, Daniele Schön","doi":"10.3934/neuroscience.2023025","DOIUrl":"https://doi.org/10.3934/neuroscience.2023025","url":null,"abstract":"<abstract> <p>One way to investigate the cortical tracking of continuous auditory stimuli is to use the stimulus reconstruction approach. However, the cognitive and behavioral factors impacting this cortical representation remain largely overlooked. Two possible candidates are familiarity with the stimulus and the ability to resist internal distractions. To explore the possible impacts of these two factors on the cortical representation of natural music stimuli, forty-one participants listened to monodic natural music stimuli while we recorded their neural activity. Using the stimulus reconstruction approach and linear mixed models, we found that familiarity positively impacted the reconstruction accuracy of music stimuli and that this effect of familiarity was modulated by mind wandering.</p> </abstract>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135659464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of postnatal environmental enrichment on LTP induction in the CA1 area of hippocampus of prenatally traffic noise-stressed female rats 产后环境富集对产前交通噪声应激雌性大鼠海马CA1区LTP诱导的影响
AIMS Neuroscience Pub Date : 2023-01-01 DOI: 10.3934/neuroscience.2023021
Fatemeh Aghighi, Mahmoud Salami, Sayyed Alireza Talaei
{"title":"Effect of postnatal environmental enrichment on LTP induction in the CA1 area of hippocampus of prenatally traffic noise-stressed female rats","authors":"Fatemeh Aghighi, Mahmoud Salami, Sayyed Alireza Talaei","doi":"10.3934/neuroscience.2023021","DOIUrl":"https://doi.org/10.3934/neuroscience.2023021","url":null,"abstract":"<abstract> <p>Early-life stress negatively alters mammalian brain programming. Environmental enrichment (EE) has beneficial effects on brain structure and function. This study aimed to evaluate the effects of postnatal environmental enrichment on long-term potentiation (LTP) induction in the hippocampal CA1 area of prenatally stressed female rats. The pregnant Wistar rats were housed in a standard animal room and exposed to traffic noise stress 2 hours/day during the third week of pregnancy. Their offspring either remained intact (ST) or received enrichment (SE) for a month starting from postnatal day 21. The control groups either remained intact (CO) or received enrichment (CE). Basic field excitatory post-synaptic potentials (fEPSPs) were recorded in the CA1 area; then, LTP was induced by high-frequency stimulation. Finally, the serum levels of corticosterone were measured. Our results showed that while the prenatal noise stress decreased the baseline responses of the ST rats when compared to the control rats (P &amp;lt; 0.001), the postnatal EE increased the fEPSPs of both the CE and SE animals when compared to the respective controls. Additionally, high-frequency stimulation (HFS) induced LTP in the fEPSPs of the CO rats (P &amp;lt; 0.001) and failed to induce LTP in the fEPSPs of the ST animals. The enriched condition caused increased potentiation of post-HFS responses in the controls (P &amp;lt; 0.001) and restored the disrupted synaptic plasticity of the CA1 area in the prenatally stressed rats. Likewise, the postnatal EE decreased the elevated serum corticosterone of prenatally stressed offspring (P &amp;lt; 0.001). In conclusion, the postnatal EE restored the stress induced impairment of synaptic plasticity in rats' female offspring.</p> </abstract>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135104772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimation of white matter hyperintensities with synthetic MRI myelin volume fraction in patients with multiple sclerosis and non-multiple-sclerosis white matter hyperintensities: A pilot study among the Indian population. 用合成MRI髓磷脂体积分数评估多发性硬化症和非多发性硬化症患者白质高信号:一项针对印度人群的初步研究。
IF 2.7
AIMS Neuroscience Pub Date : 2023-01-01 DOI: 10.3934/Neuroscience.2023011
Nisha Syed Nasser, Krish Sharma, Parv Mahendra Mehta, Vidur Mahajan, Harsh Mahajan, Vasantha Kumar Venugopal
{"title":"Estimation of white matter hyperintensities with synthetic MRI myelin volume fraction in patients with multiple sclerosis and non-multiple-sclerosis white matter hyperintensities: A pilot study among the Indian population.","authors":"Nisha Syed Nasser,&nbsp;Krish Sharma,&nbsp;Parv Mahendra Mehta,&nbsp;Vidur Mahajan,&nbsp;Harsh Mahajan,&nbsp;Vasantha Kumar Venugopal","doi":"10.3934/Neuroscience.2023011","DOIUrl":"https://doi.org/10.3934/Neuroscience.2023011","url":null,"abstract":"<p><strong>Aim: </strong>Synthetic MRI (SyMRI) works on the MDME sequence, which acquires the relaxation properties of the brain and helps to measure the accurate tissue properties in 6 minutes. The aim of this study was to evaluate the synthetic MRI (SyMRI)-generated myelin (MyC) to white matter (WM) ratio, the WM fraction (WMF), MyC partial maps performing normative brain volumetry to investigate MyC loss in multiple sclerosis (MS) patients with white-matter hyperintensites (WMHs) and non-MS patients with WMHs in a clinical setting.</p><p><strong>Materials and methods: </strong>Synthetic MRI images were acquired from 15 patients with MS, and from 15 non-MS patients on a 3T MRI scanner (Discovery MR750w; GE Healthcare; Milwaukee, USA) using MAGiC, a customized version of SyntheticMR's SyMRI® IMAGE software marketed by GE Healthcare under a license agreement. Fast multi-delay multi-echo acquisition was performed with a 2D axial pulse sequence with different combinations of echo time (TEs) and saturation delay times. The total image acquisition time was 6 minutes. SyMRI image analysis was done using SyMRI software (SyMRI Version: 11.3.6; Synthetic MR, Linköping, Sweden). SyMRI data were used to generate the MyC partial maps and WMFs to quantify the signal intensities of test group and control group, andcontrol group , and their mean values were recorded. All patients also underwent conventional diffusion-weighted imaging, i.e., T1w and T2w imaging.</p><p><strong>Results: </strong>The results showed that the WMF was significantly lower in the test group than in the control group (38.8% vs 33.2%, p < 0.001). The Mann-Whitney U nonparametric t-test revealed a significant difference in the mean myelin volume between the test group and the control group (158.66 ± 32.31 vs. 138.29 ± 29.28, p = 0.044). Also, there were no significant differences in the gray matter fraction and intracranial volume between the test group and the control group.</p><p><strong>Conclusions: </strong>We observed MyC loss in test group using quantitative SyMRI. Thus, myelin loss in MS patients can be quantitatively evaluated using SyMRI.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"10 2","pages":"144-153"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10323258/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10168762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Post-translational modifications of the apelin receptor regulate its functional expression apelin受体的翻译后修饰调节其功能表达
AIMS Neuroscience Pub Date : 2023-01-01 DOI: 10.3934/neuroscience.2023022
Toshihiko Kinjo, Shun Ebisawa, Tatsuya Nokubo, Mifu Hashimoto, Takonori Yamada, Michiko Oshio, Ruka Nakamura, Kyosuke Uno, Nobuyuki Kuramoto
{"title":"Post-translational modifications of the apelin receptor regulate its functional expression","authors":"Toshihiko Kinjo, Shun Ebisawa, Tatsuya Nokubo, Mifu Hashimoto, Takonori Yamada, Michiko Oshio, Ruka Nakamura, Kyosuke Uno, Nobuyuki Kuramoto","doi":"10.3934/neuroscience.2023022","DOIUrl":"https://doi.org/10.3934/neuroscience.2023022","url":null,"abstract":"<abstract> <p>Post-translational modifications (PTMs) are protein modifications that occur after protein biosynthesis, playing a crucial role in regulating protein function. They are involved in the functional expression of G-protein-coupled receptors (GPCRs), as well as intracellular and secretory protein signaling. Here, we aimed to investigate the PTMs of the apelin receptor (APLNR), a GPCR and their potential influence on the receptor's function. In an in vitro experiment using HEK cells, we only observed glycosylation as a PTM of the APLNR and ineffective receptor signaling by the agonist, (Pyr<sup>1</sup>)-apelin-13. In contrast, when analyzing mouse spinal cord, we detected glycosylation and other PTMs, excluding isopeptidation. This suggests that additional PTMs are involved in the functional expression of the APLNR in vitro. In summary, these findings suggest that the APLNR in vivo requires multiple PTMs for functional expression. To comprehensively understand the pharmacological effects of the APLNR, it is essential to establish an in vitro system that adequately replicates the receptor's PTM profile. Nonetheless, it is crucial to overcome the challenge of heat-sensitive proteolysis in APLNR studies. By elucidating the regulation of PTMs, further research has the potential to advance the analysis and pharmacological studies of both the apelin/APLNR system and GPCR signal modulation.</p> </abstract>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134980359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chronic treatment with escitalopram and venlafaxine affects the neuropeptide S pathway differently in adult Wistar rats exposed to maternal separation. 艾司西酞普兰和文拉法辛慢性治疗对母鼠分离后成年Wistar大鼠神经肽S通路的影响不同。
IF 2.7
AIMS Neuroscience Pub Date : 2022-09-13 eCollection Date: 2022-01-01 DOI: 10.3934/Neuroscience.2022022
Miłosz Gołyszny, Michał Zieliński, Monika Paul-Samojedny, Artur Pałasz, Ewa Obuchowicz
{"title":"Chronic treatment with escitalopram and venlafaxine affects the neuropeptide S pathway differently in adult Wistar rats exposed to maternal separation.","authors":"Miłosz Gołyszny,&nbsp;Michał Zieliński,&nbsp;Monika Paul-Samojedny,&nbsp;Artur Pałasz,&nbsp;Ewa Obuchowicz","doi":"10.3934/Neuroscience.2022022","DOIUrl":"https://doi.org/10.3934/Neuroscience.2022022","url":null,"abstract":"<p><p>Neuropeptide S (NPS), which is a peptide that is involved in the regulation of the stress response, seems to be relevant to the mechanism of action of antidepressants that have anxiolytic properties. However, to date, there have been no reports regarding the effect of long-term treatment with escitalopram or venlafaxine on the NPS system under stress conditions. This study aimed to investigate the effects of the above-mentioned antidepressants on the NPS system in adult male Wistar rats that were exposed to neonatal maternal separation (MS). Animals were exposed to MS for 360 min. on postnatal days (PNDs) 2-15. MS causes long-lasting behavioral, endocrine and neurochemical consequences that mimic anxiety- and depression-related features. MS and non-stressed rats were given escitalopram or venlafaxine (10mg/kg) IP from PND 69 to 89. The NPS system was analyzed in the brainstem, hypothalamus, amygdala and anterior olfactory nucleus using quantitative RT-PCR and immunohistochemical methods. The NPS system was vulnerable to MS in the brainstem and amygdala. In the brainstem, escitalopram down-regulated NPS and NPS mRNA in the MS rats and induced a tendency to reduce the number of NPS-positive cells in the peri-locus coeruleus. In the MS rats, venlafaxine insignificantly decreased the NPSR mRNA levels in the amygdala and a number of NPSR cells in the basolateral amygdala, and increased the NPS mRNA levels in the hypothalamus. Our data show that the studied antidepressants affect the NPS system differently and preliminarily suggest that the NPS system might partially mediate the pharmacological effects that are induced by these drugs.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"9 3","pages":"395-422"},"PeriodicalIF":2.7,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9581731/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40679829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Neural basis of topographical disorientation in the primate posterior cingulate gyrus based on a labeled graph. 基于标签图的灵长类后扣带回地形迷失的神经基础。
IF 3.1
AIMS Neuroscience Pub Date : 2022-09-09 eCollection Date: 2022-01-01 DOI: 10.3934/Neuroscience.2022021
Yang Yu, Tsuyoshi Setogawa, Jumpei Matsumoto, Hiroshi Nishimaru, Hisao Nishijo
{"title":"Neural basis of topographical disorientation in the primate posterior cingulate gyrus based on a labeled graph.","authors":"Yang Yu, Tsuyoshi Setogawa, Jumpei Matsumoto, Hiroshi Nishimaru, Hisao Nishijo","doi":"10.3934/Neuroscience.2022021","DOIUrl":"10.3934/Neuroscience.2022021","url":null,"abstract":"<p><p>Patients with lesions in the posterior cingulate gyrus (PCG), including the retrosplenial cortex (RSC) and posterior cingulate cortex (PCC), cannot navigate in familiar environments, nor draw routes on a 2D map of the familiar environments. This suggests that the topographical knowledge of the environments (i.e., cognitive map) to find the right route to a goal is represented in the PCG, and the patients lack such knowledge. However, theoretical backgrounds in neuronal levels for these symptoms in primates are unclear. Recent behavioral studies suggest that human spatial knowledge is constructed based on a labeled graph that consists of topological connections (edges) between places (nodes), where local metric information, such as distances between nodes (edge weights) and angles between edges (node labels), are incorporated. We hypothesize that the population neural activity in the PCG may represent such knowledge based on a labeled graph to encode routes in both 3D environments and 2D maps. Since no previous data are available to test the hypothesis, we recorded PCG neuronal activity from a monkey during performance of virtual navigation and map drawing-like tasks. The results indicated that most PCG neurons responded differentially to spatial parameters of the environments, including the place, head direction, and reward delivery at specific reward areas. The labeled graph-based analyses of the data suggest that the population activity of the PCG neurons represents the distance traveled, locations, movement direction, and navigation routes in the 3D and 2D virtual environments. These results support the hypothesis and provide a neuronal basis for the labeled graph-based representation of a familiar environment, consistent with PCG functions inferred from the human clinicopathological studies.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"9 3","pages":"373-394"},"PeriodicalIF":3.1,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9581735/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40679831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信