AIMS Neuroscience最新文献

筛选
英文 中文
Deep brain stimulation, lesioning, focused ultrasound: update on utility. 脑深部刺激,病变,聚焦超声:效用更新。
IF 2.7
AIMS Neuroscience Pub Date : 2023-01-01 DOI: 10.3934/Neuroscience.2023007
Akshay Reddy, Mohammad Reza Hosseini, Aashay Patel, Ramy Sharaf, Vishruth Reddy, Arman Tabarestani, Brandon Lucke-Wold
{"title":"Deep brain stimulation, lesioning, focused ultrasound: update on utility.","authors":"Akshay Reddy,&nbsp;Mohammad Reza Hosseini,&nbsp;Aashay Patel,&nbsp;Ramy Sharaf,&nbsp;Vishruth Reddy,&nbsp;Arman Tabarestani,&nbsp;Brandon Lucke-Wold","doi":"10.3934/Neuroscience.2023007","DOIUrl":"https://doi.org/10.3934/Neuroscience.2023007","url":null,"abstract":"<p><p>Procedures for neurological disorders such as Parkinsons Disease (PD), Essential Tremor (ET), Obsessive Compulsive Disorder (OCD), Tourette's Syndrome (TS), and Major Depressive Disorder (MDD) tend to overlap. Common therapeutic procedures include deep brain stimulation (DBS), lesioning, and focused ultrasound (FUS). There has been significant change and innovation regarding targeting mechanisms and new advancements in this field allowing for better clinical outcomes in patients with severe cases of these conditions. In this review, we discuss advancements and recent discoveries regarding these three procedures and how they have led to changes in utilization in certain conditions. We further discuss the advantages and drawbacks of these treatments in certain conditions and the emerging advancements in brain-computer interface (BCI) and its utility as a therapeutic for neurological disorders.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"10 2","pages":"87-108"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10323264/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10168760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transitioning from PET/MR to trimodal neuroimaging: why not cover the temporal dimension with EEG? 从PET/MR到三模态神经成像的过渡:为什么不用脑电图覆盖时间维度?
IF 2.7
AIMS Neuroscience Pub Date : 2023-01-01 DOI: 10.3934/Neuroscience.2023001
Arosh S Perera Molligoda Arachchige
{"title":"Transitioning from PET/MR to trimodal neuroimaging: why not cover the temporal dimension with EEG?","authors":"Arosh S Perera Molligoda Arachchige","doi":"10.3934/Neuroscience.2023001","DOIUrl":"https://doi.org/10.3934/Neuroscience.2023001","url":null,"abstract":"<p><p>The possibility of multimodality imaging with PET/MR and the availability of ultra-high field MRI has allowed to investigate novel aspects of neuropsychiatric conditions. One of the major barriers in current studies is the lack of an instrument that allows to accurately cover the temporal aspect under the same physiological conditions. The aim of this commentary is to provide our perspective on how the integration of EEG-PET-MR could be a solution to the current challenge in molecular imaging and seems to hold great promise in future pharmacological challenging-based studies, understanding different functional states of the brain, and could furthermore aid in the diagnostic and prognostic evaluations of neurocognitive disorders.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"10 1","pages":"1-4"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10106333/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9383973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A rare case of basilar artery dissection. 基底动脉夹层1例。
IF 2.7
AIMS Neuroscience Pub Date : 2023-01-01 DOI: 10.3934/Neuroscience.2023008
Sahibjot Bhatia, Nimrit Gahoonia, Jeffrey Stenger, Forshing Lui
{"title":"A rare case of basilar artery dissection.","authors":"Sahibjot Bhatia,&nbsp;Nimrit Gahoonia,&nbsp;Jeffrey Stenger,&nbsp;Forshing Lui","doi":"10.3934/Neuroscience.2023008","DOIUrl":"https://doi.org/10.3934/Neuroscience.2023008","url":null,"abstract":"<p><p>This case describes a 30-year-old Hispanic male who presented with a significant headache that started after a period of weightlifting and squatting. The patient was diagnosed with a basilar artery dissection. His only complaint was a headache that was exacerbated with exertion and sexual activity; there were no neurologic deficits. The diagnosis of basilar artery dissection was established and supported by findings on the CT angiogram of his head and neck. Basilar artery dissections are rarely seen, as they are likely underrecognized due to their varying clinical presentations; however, it is important to consider these phenomena due to the risk of progression and high morbidity rates.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"10 2","pages":"109-117"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10323257/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9811188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The blue brain project: pioneering the frontier of brain simulation 蓝脑计划:开拓大脑模拟的前沿
AIMS Neuroscience Pub Date : 2023-01-01 DOI: 10.3934/neuroscience.2023024
Arosh S. Perera Molligoda Arachchige
{"title":"The blue brain project: pioneering the frontier of brain simulation","authors":"Arosh S. Perera Molligoda Arachchige","doi":"10.3934/neuroscience.2023024","DOIUrl":"https://doi.org/10.3934/neuroscience.2023024","url":null,"abstract":"<jats:p xml:lang=\"fr\" />","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134980161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The impact of Lego® Therapy on cognitive skills in Autism Spectrum Disorders: a brief discussion. 乐高®疗法对自闭症谱系障碍患者认知技能的影响:简要讨论。
IF 2.7
AIMS Neuroscience Pub Date : 2023-01-01 DOI: 10.3934/Neuroscience.2023016
Nicoletta Vegni, Caterina D'Ardia, Gloria Di Filippo, Francesco Maria Melchiori
{"title":"The impact of Lego® Therapy on cognitive skills in Autism Spectrum Disorders: a brief discussion.","authors":"Nicoletta Vegni,&nbsp;Caterina D'Ardia,&nbsp;Gloria Di Filippo,&nbsp;Francesco Maria Melchiori","doi":"10.3934/Neuroscience.2023016","DOIUrl":"https://doi.org/10.3934/Neuroscience.2023016","url":null,"abstract":"<p><p>Over the years, several interventions have been implemented, including Lego® Therapy, with the aim of supporting and implementing social and communication skills impairments in Autism Spectrum Disorders (ASD). Although recent studies have shown that the ability to learn implicitly is preserved in ASDs, no study related to Lego® Therapy has analyzed whether and how this training can also affect aspects not directly treated. In this study, we report a first attempt of assessment of Lego® Therapy's effect on the specific area of cognitive skills in an ASD child. Over a period of 12 months, a child with ASD had weekly meetings with an expert operator of Lego® aiming to improve the child's ability to communicate, reduce impulsiveness and hyper verbalism, and encourage pro-social behavior. The intervention resulted in positive outcomes that were assessed after 12 months.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"10 2","pages":"190-199"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10323259/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10187522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Marijuana's potential in neurodegenerative diseases: an editorial. 大麻在神经退行性疾病中的潜力:一篇社论。
IF 2.7
AIMS Neuroscience Pub Date : 2023-01-01 DOI: 10.3934/Neuroscience.2023014
Arosh S Perera Molligoda Arachchige
{"title":"Marijuana's potential in neurodegenerative diseases: an editorial.","authors":"Arosh S Perera Molligoda Arachchige","doi":"10.3934/Neuroscience.2023014","DOIUrl":"https://doi.org/10.3934/Neuroscience.2023014","url":null,"abstract":"<jats:p xml:lang=\"fr\" />","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"10 2","pages":"175-177"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10323256/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10187524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
How can nanomicelle-curcumin modulate aluminum phosphide-induced neurotoxicity?: Role of SIRT1/FOXO3 signaling pathway. 纳米颗粒姜黄素如何调节磷酸铝诱导的神经毒性?SIRT1/FOXO3信号通路的作用。
IF 2.7
AIMS Neuroscience Pub Date : 2023-01-01 DOI: 10.3934/Neuroscience.2023005
Milad Khodavysi, Nejat Kheiripour, Hassan Ghasemi, Sara Soleimani-Asl, Ali Fathi Jouzdani, Mohammadmahdi Sabahi, Zahra Ganji, Zahra Azizi, Akram Ranjbar
{"title":"How can nanomicelle-curcumin modulate aluminum phosphide-induced neurotoxicity?: Role of SIRT1/FOXO3 signaling pathway.","authors":"Milad Khodavysi,&nbsp;Nejat Kheiripour,&nbsp;Hassan Ghasemi,&nbsp;Sara Soleimani-Asl,&nbsp;Ali Fathi Jouzdani,&nbsp;Mohammadmahdi Sabahi,&nbsp;Zahra Ganji,&nbsp;Zahra Azizi,&nbsp;Akram Ranjbar","doi":"10.3934/Neuroscience.2023005","DOIUrl":"https://doi.org/10.3934/Neuroscience.2023005","url":null,"abstract":"<p><p>Aluminum phosphide (ALP) is among the most significant causes of brain toxicity and death in many countries. Curcumin (CUR), a major turmeric component, is a potent protective agent against many diseases, including brain toxicity. This study aimed to examine the probable protection potential of nanomicelle curcumin (nanomicelle-CUR) and its underlying mechanism in a rat model of ALP-induced brain toxicity. A total of 36 Wistar rats were randomly divided into six groups (n = 6) and exposed to ALP (2 mg/kg/day, orally) + CUR or nanomicelle-CUR (100 mg/kg/day, orally) for 7 days. Then, they were anesthetized, and brain tissue samples were dissected to evaluate histopathological alterations, oxidative stress biomarkers, gene expression of SIRT1, FOXO1a, FOXO3a, CAT and GPX in brain tissue via hematoxylin and eosin (H&E) staining, biochemical and enzyme-linked immunosorbent assay (ELISA) methods and Real-Time PCR analysis. CUR and nanomicelle-CUR caused significant improvement in ALP-induced brain damage by reducing the MDA levels and induction of antioxidant capacity (TTG, TAC and SOD levels) and antioxidant enzymes (CAT, GPX), modulation of histopathological changes and up-regulation of gene expression of SIRT1 in brain tissue. It was concluded that nanomicelle-CUR treatment ameliorated the harmful effects of ALP-induced brain toxicity by reducing oxidative stress. Therefore, it could be considered a suitable therapeutic choice for ALP poisoning.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"10 1","pages":"56-74"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10106336/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9383977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuroimaging with SPECT-MRI: a myth or reality? SPECT-MRI神经成像:神话还是现实?
IF 2.7
AIMS Neuroscience Pub Date : 2023-01-01 DOI: 10.3934/Neuroscience.2023004
Arosh S Perera Molligoda Arachchige
{"title":"Neuroimaging with SPECT-MRI: a myth or reality?","authors":"Arosh S Perera Molligoda Arachchige","doi":"10.3934/Neuroscience.2023004","DOIUrl":"https://doi.org/10.3934/Neuroscience.2023004","url":null,"abstract":"","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"10 1","pages":"52-55"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10106334/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9385186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adapting patient treatment of neurological diseases during the COVID-19 pandemic. COVID-19大流行期间调整神经系统疾病患者治疗。
IF 2.7
AIMS Neuroscience Pub Date : 2023-01-01 DOI: 10.3934/Neuroscience.2023006
Scott Mendoza
{"title":"Adapting patient treatment of neurological diseases during the COVID-19 pandemic.","authors":"Scott Mendoza","doi":"10.3934/Neuroscience.2023006","DOIUrl":"https://doi.org/10.3934/Neuroscience.2023006","url":null,"abstract":"<p><p>Treating neurological patients during the pandemic period has become extremely challenging. At the same time, responding properly to these challenges has been diverse around the world, with varying levels of readiness, discipline, and approach. Additionally, there are significant differences in healthcare resources and processes between nations, and even within a nation, and these have significantly influenced the treatment procedure throughout the pandemic. However, neurologists have been called to care for patients with neurological symptoms who have COVID-19, and to continue managing COVID-19-affected neurological comorbidities in patients as before. This study highlights how the treatment procedures for neurological diseases are rapidly changing due to the spread of the SARS-CoV-2 virus. It also focuses on the challenges healthcare professionals are facing while providing proper treatment to neurological patients during the pandemic situation. Lastly, it offers some useful recommendations regarding the effective management of neurological diseases during the COVID-19 pandemic period.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"10 2","pages":"75-86"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10323254/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10168757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contextual fear response is modulated by M-type K+ channels and is associated with subtle structural changes of the axon initial segment in hippocampal GABAergic neurons. 情境恐惧反应受m型K+通道调节,与海马gaba能神经元轴突初始段的细微结构变化有关。
IF 2.7
AIMS Neuroscience Pub Date : 2023-01-01 DOI: 10.3934/Neuroscience.2023003
Sara Arciniegas Ruiz, Eliav Tikochinsky, Vardit Rubovitch, Chaim G Pick, Bernard Attali
{"title":"Contextual fear response is modulated by M-type K+ channels and is associated with subtle structural changes of the axon initial segment in hippocampal GABAergic neurons.","authors":"Sara Arciniegas Ruiz,&nbsp;Eliav Tikochinsky,&nbsp;Vardit Rubovitch,&nbsp;Chaim G Pick,&nbsp;Bernard Attali","doi":"10.3934/Neuroscience.2023003","DOIUrl":"https://doi.org/10.3934/Neuroscience.2023003","url":null,"abstract":"<p><strong>Background: </strong>In the fear memory network, the hippocampus modulates contextual aspects of fear learning while mutual connections between the amygdala and the medial prefrontal cortex are widely involved in fear extinction. G-protein-coupled receptors (GPCRs) are involved in the regulation of fear and anxiety, so the regulation of GPCRs in fear signaling pathways can modulate the mechanisms of fear memory acquisition, consolidation and extinction. Various studies suggested a role of M-type K+ channels in modulating fear expression and extinction, although conflicting data prevented drawing of clear conclusions. In the present work, we examined the impact of M-type K+ channel blockade or activation on contextual fear acquisition and extinction. In addition, regarding the pivotal role of the hippocampus in contextual fear conditioning (CFC) and the involvement of the axon initial segment (AIS) in neuronal plasticity, we investigated whether structural alterations of the AIS in hippocampal neurons occurred during contextual fear memory acquisition and short-time extinction in mice in a behaviorally relevant context.</p><p><strong>Results: </strong>When a single systemic injection of the M-channel blocker XE991 (2 mg/kg, IP) was carried out 15 minutes before the foot shock session, fear expression was significantly reduced. Expression of c-Fos was increased following CFC, mostly in GABAergic neurons at day 1 and day 2 post-fear training in CA1 and dentate gyrus hippocampal regions. A significantly longer AIS segment was observed in GABAergic neurons of the CA1 hippocampal region at day 2.</p><p><strong>Conclusions: </strong>Our results underscore the role of M-type K + channels in CFC and the importance of hippocampal GABAergic neurons in fear expression.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"10 1","pages":"33-51"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10106335/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9383970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信