AIMS NeurosciencePub Date : 2024-04-22eCollection Date: 2024-01-01DOI: 10.3934/Neuroscience.2024008
Orish E Orisakwe, Evelyn Utomoibor Ikpeama, Chinna N Orish, Anthonet N Ezejiofor, Kenneth O Okolo, Aleksandar Cirovic, Ana Cirovic, Ify L Nwaogazie, Chinekwu Samson Onoyima
{"title":"<i>Prosopis africana</i> exerts neuroprotective activity against quaternary metal mixture-induced memory impairment mediated by oxido-inflammatory response via Nrf2 pathway.","authors":"Orish E Orisakwe, Evelyn Utomoibor Ikpeama, Chinna N Orish, Anthonet N Ezejiofor, Kenneth O Okolo, Aleksandar Cirovic, Ana Cirovic, Ify L Nwaogazie, Chinekwu Samson Onoyima","doi":"10.3934/Neuroscience.2024008","DOIUrl":"10.3934/Neuroscience.2024008","url":null,"abstract":"<p><p>The beneficial effects of <i>Prosopis africana</i> (PA) on human health have been demonstrated; however, its protective effects against heavy metals (HM) are not yet understood. This study evaluated the potential neuroprotective effects of PA in the cerebral cortex and cerebellum. To accomplish this, we divided 35 albino Sprague Dawley rats into five groups. Group I did not receive either heavy metal mixture (HMM) or PA. Group II received a HMM of PbCl<sub>2</sub> (20 mg/kg), CdCl<sub>2</sub> (1.61 mg/kg), HgCl<sub>2</sub> (0.40 mg/kg), and NaAsO<sub>3</sub> (10 mg/kg) orally for a period of two months. Groups III, IV, and V received HMM along with PA at doses of 500, 1000, and 1500 mg/kg, respectively. PA caused decreased levels of HM accumulation in the cerebral cortex and cerebellum and improved performance in the Barnes maze and rotarod tests. PA significantly reduced levels of IL-6 and TNF-α. PA increased concentrations of SOD, CAT, GSH, and Hmox-1 and decreased the activities of AChE and Nrf2. In addition, levels of MDA and NO decreased in groups III, IV, and V, along with an increase in the number of live neurons. In conclusion, PA demonstrates a complex neuroprotective effect with the potential to alleviate various aspects of HM-induced neurotoxicity.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"11 2","pages":"118-143"},"PeriodicalIF":3.1,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230863/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AIMS NeurosciencePub Date : 2024-04-19eCollection Date: 2024-01-01DOI: 10.3934/Neuroscience.2024007
Dimitra Anatolou, Marios G Krokidis
{"title":"Computational analysis of peripheral blood RNA sequencing data unravels disrupted immune patterns in Alzheimer's disease.","authors":"Dimitra Anatolou, Marios G Krokidis","doi":"10.3934/Neuroscience.2024007","DOIUrl":"10.3934/Neuroscience.2024007","url":null,"abstract":"<p><p>The central nervous system (CNS) and the immune system collectively coordinate cellular functionalities, sharing common developmental mechanisms. Immunity-related molecules exert an influence on brain development, challenging the conventional view of the brain as immune-privileged. Chronic inflammation emerges as a key player in the pathophysiology of Alzheimer's disease (AD), with increased stress contributing to the disease progression and potentially exacerbating existing symptoms. In this study, the most significant gene signatures from selected RNA-sequencing (RNA-seq) data from AD patients and healthy individuals were obtained and a functional analysis and biological interpretation was conducted, including network and pathway enrichment analysis. Important evidence was reported, such as enrichment in immune system responses and antigen processes, as well as positive regulation of T-cell mediated cytotoxicity and endogenous and exogenous peptide antigen, thus indicating neuroinflammation and immune response participation in disease progression. These findings suggest a disturbance in the immune infiltration of the peripheral immune environment, providing new challenges to explore key biological processes from a molecular perspective that strongly participate in AD development.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"11 2","pages":"103-117"},"PeriodicalIF":3.1,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230858/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AIMS NeurosciencePub Date : 2024-04-19eCollection Date: 2024-01-01DOI: 10.3934/Neuroscience.2024006
Evgenia Lazarou, Themis P Exarchos
{"title":"Predicting stress levels using physiological data: Real-time stress prediction models utilizing wearable devices.","authors":"Evgenia Lazarou, Themis P Exarchos","doi":"10.3934/Neuroscience.2024006","DOIUrl":"10.3934/Neuroscience.2024006","url":null,"abstract":"<p><p>Stress has emerged as a prominent and multifaceted health concern in contemporary society, manifesting detrimental effects on individuals' physical and mental health and well-being. The ability to accurately predict stress levels in real time holds significant promise for facilitating timely interventions and personalized stress management strategies. The increasing incidence of stress-related physical and mental health issues highlights the importance of thoroughly understanding stress prediction mechanisms. Given that stress is a contributing factor to a wide array of mental and physical health problems, objectively assessing stress is crucial for behavioral and physiological studies. While numerous studies have assessed stress levels in controlled environments, the objective evaluation of stress in everyday settings still needs to be explored, primarily due to contextual factors and limitations in self-report adherence. This short review explored the emerging field of real-time stress prediction, focusing on utilizing physiological data collected by wearable devices. Stress was examined from a comprehensive standpoint, acknowledging its effects on both physical and mental well-being. The review synthesized existing research on the development and application of stress prediction models, underscoring advancements, challenges, and future directions in this rapidly evolving domain. Emphasis was placed on examining and critically evaluating the existing research and literature on stress prediction, physiological data analysis, and wearable devices for stress monitoring. The synthesis of findings aimed to contribute to a better understanding of the potential of wearable technology in objectively assessing and predicting stress levels in real time, thereby informing the design of effective interventions and personalized stress management approaches.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"11 2","pages":"76-102"},"PeriodicalIF":3.1,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230864/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AIMS NeurosciencePub Date : 2024-04-12eCollection Date: 2024-01-01DOI: 10.3934/Neuroscience.2024005
Ubaid Ansari, Dawnica Nadora, Meraj Alam, Jimmy Wen, Shaheryar Asad, Forshing Lui
{"title":"Influence of dietary patterns in the pathophysiology of Huntington's Disease: A literature review.","authors":"Ubaid Ansari, Dawnica Nadora, Meraj Alam, Jimmy Wen, Shaheryar Asad, Forshing Lui","doi":"10.3934/Neuroscience.2024005","DOIUrl":"10.3934/Neuroscience.2024005","url":null,"abstract":"<p><p>Huntington's disease (HD), a rare autosomal dominant neurodegenerative disease, causes the gradual deterioration of neurons in the basal ganglia, specifically in the striatum. HD displays a wide range of symptoms, from motor disturbances such as chorea, dystonia, and bradykinesia to more debilitating symptoms such as cognitive decline, behavioral abnormalities, and psychiatric disturbances. Current research suggests the potential use of dietary interventions as viable strategies for slowing the progression of HD. Most notably, the Mediterranean, vegan, carnivore, paleo, and ketogenic diets have gained attention due to their hypothesized impact on neuroprotection and symptomatic modulation in various neurodegenerative disorders. Despite substantial nutritional differences among these diets, they share a fundamental premise-that dietary factors have an influential impact in modifying pertinent biological pathways linked to neurodegeneration. Understanding the intricate interactions between these dietary regimens and HD pathogenesis could open avenues for personalized interventions tailored to the individual's specific needs and genetic background. Ultimately, elucidating the multifaceted effects of these diets on HD offers a promising framework for developing comprehensive therapeutic approaches that integrate dietary strategies with conventional treatments.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"11 2","pages":"63-75"},"PeriodicalIF":3.1,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230857/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AIMS NeurosciencePub Date : 2024-03-31eCollection Date: 2024-01-01DOI: 10.3934/Neuroscience.2024004
Temitope Awe, Ayoola Fasawe, Caleb Sawe, Adedayo Ogunware, Abdullahi Temitope Jamiu, Michael Allen
{"title":"The modulatory role of gut microbiota on host behavior: exploring the interaction between the brain-gut axis and the neuroendocrine system.","authors":"Temitope Awe, Ayoola Fasawe, Caleb Sawe, Adedayo Ogunware, Abdullahi Temitope Jamiu, Michael Allen","doi":"10.3934/Neuroscience.2024004","DOIUrl":"https://doi.org/10.3934/Neuroscience.2024004","url":null,"abstract":"<p><p>The brain-gut axis refers to the communication between the central nervous system and the gastrointestinal tract, with the gut microbiome playing a crucial role. While our understanding of the interaction between the gut microbiome and the host's physiology is still in its nascent stage, evidence suggests that the gut microbiota can indeed modulate host behavior. Understanding the specific mechanisms by which the gut microbiota community modulates the host's behavior remains the focus of present and future neuro-gastroenterology studies. This paper reviews several pieces of evidence from the literature on the impact of gut microbiota on host behavior across animal taxa. We explore the different pathways through which this modulation occurs, with the aim of deepening our understanding of the fascinating relationship between the gut microbiome and the central nervous system.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"11 1","pages":"49-62"},"PeriodicalIF":2.7,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11007408/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140847176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AIMS NeurosciencePub Date : 2024-03-25eCollection Date: 2024-01-01DOI: 10.3934/Neuroscience.2024003
I B Mosse, N G Sedlyar, K A Mosse, A V Kilchevsky
{"title":"DNA methylation differences in genes associated with human personal disorders and deviant behavior.","authors":"I B Mosse, N G Sedlyar, K A Mosse, A V Kilchevsky","doi":"10.3934/Neuroscience.2024003","DOIUrl":"https://doi.org/10.3934/Neuroscience.2024003","url":null,"abstract":"<p><p>Epigenetic regulation of gene expression is involved in the progression of mental disorders, including deviant behavior, brain developmental, and personality disorders. The large number of genes has been studied for their activity association with stress and depression; however, the obtained results for the majority of these genes are contradictory. The aim of our study was to investigate the possible contribution of methylation level changes to the development of personality disorders and deviant behavior. A systematic study of CpG Islands in 21 target regions, including the promoter and intron regions of the 12 genes was performed in DNA samples extracted from peripheral blood cells, to obtain an overview of their methylation status. High-throughput sequencing of converted DNA samples was performed and calling of the methylation sites on the \"original top strand\" in CpG islands was carried out in the Bismark pipeline. The initial methylation profile of 77 patients and 48 controls samples revealed a significant difference in 7 CpG sites in 6 genes. The most significant hypermethylation was found for the target sites of the <i>HTR2A</i> (p-value = 1.2 × 10<sup>-13</sup>) and <i>OXTR</i> (p-value = 2.3 × 10<sup>-7</sup>) genes. These data support the previous reports that alterations in DNA methylation may play an important role in the dysregulation of gene expression associated with personality disorders and deviant behavior, and confirm their potential use as biomarkers to improve thediagnosis, prognosis, and assessment of response to treatment.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"11 1","pages":"39-48"},"PeriodicalIF":2.7,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11007406/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140856143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sulcal pits of the superior temporal sulcus in schizophrenia patients with auditory verbal hallucinations.","authors":"Baptiste Lerosier, Gregory Simon, Sylvain Takerkart, Guillaume Auzias, Sonia Dollfus","doi":"10.3934/Neuroscience.2024002","DOIUrl":"https://doi.org/10.3934/Neuroscience.2024002","url":null,"abstract":"<p><p>Auditory verbal hallucinations (AVHs) are among the most common and disabling symptoms of schizophrenia. They involve the superior temporal sulcus (STS), which is associated with language processing; specific STS patterns may reflect vulnerability to auditory hallucinations in schizophrenia. STS sulcal pits are the deepest points of the folds in this region and were investigated here as an anatomical landmark of AVHs. This study included 53 patients diagnosed with schizophrenia and past or present AVHs, as well as 100 healthy control volunteers. All participants underwent a 3-T magnetic resonance imaging T1 brain scan, and sulcal pit differences were compared between the two groups. Compared with controls, patients with AVHs had a significantly different distributions for the number of sulcal pits in the left STS, indicating a less complex morphological pattern. The association of STS sulcal morphology with AVH suggests an early neurodevelopmental process in the pathophysiology of schizophrenia with AVHs.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"11 1","pages":"25-38"},"PeriodicalIF":2.7,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11007407/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140848459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AIMS NeurosciencePub Date : 2024-01-11eCollection Date: 2024-01-01DOI: 10.3934/Neuroscience.2024001
Che Aishah Nazariah Ismail, Rahimah Zakaria, Khairunnuur Fairuz Azman, Nazlahshaniza Shafin, Noor Azlina Abu Bakar
{"title":"Brain-derived neurotrophic factor (BDNF) in chronic pain research: A decade of bibliometric analysis and network visualization.","authors":"Che Aishah Nazariah Ismail, Rahimah Zakaria, Khairunnuur Fairuz Azman, Nazlahshaniza Shafin, Noor Azlina Abu Bakar","doi":"10.3934/Neuroscience.2024001","DOIUrl":"https://doi.org/10.3934/Neuroscience.2024001","url":null,"abstract":"<p><p>Chronic pain research, with a specific focus on the brain-derived neurotrophic factor (BDNF), has made impressive progress in the past decade, as evident in the improved research quality and increased publications. To better understand this evolving landscape, a quantitative approach is needed. The main aim of this study is to identify the hotspots and trends of BDNF in chronic pain research. We screened relevant publications from 2013 to 2022 in the Scopus database using specific search subject terms. A total of 401 documents were selected for further analysis. We utilized several tools, including Microsoft Excel, Harzing's Publish or Perish, and VOSViewer, to perform a frequency analysis, citation metrics, and visualization, respectively. Key indicators that were examined included publication growth, keyword analyses, topmost influential articles and journals, networking by countries and co-citation of cited references. Notably, there was a persistent publication growth between 2015 and 2021. \"Neuropathic pain\" emerged as a prominent keyword in 2018, alongside \"microglia\" and \"depression\". The journal Pain® was the most impactful journal that published BDNF and chronic pain research, while the most influential publications came from open-access reviews and original articles. China was the leading contributor, followed by the United States (US), and maintained a leadership position in the total number of publications and collaborations. In conclusion, this study provides a comprehensive list of the most influential publications on BDNF in chronic pain research, thereby aiding in the understanding of academic concerns, research hotspots, and global trends in this specialized field.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"11 1","pages":"1-24"},"PeriodicalIF":2.7,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11007409/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140851018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AIMS NeurosciencePub Date : 2023-12-15eCollection Date: 2023-01-01DOI: 10.3934/Neuroscience.2023032
Priscila Centeno Crespo, Leo Anderson Meira Martins, Otávio Garcia Martins, Clara Camacho Dos Reis, Ricardo Netto Goulart, Andressa de Souza, Liciane Fernandes Medeiros, Vanessa Leal Scarabelot, Giovana Duzzo Gamaro, Sabrina Pereira Silva, Marcos Roberto de Oliveira, Iraci Lucena da Silva Torres, Izabel Cristina Custódio de Souza
{"title":"Short-term effectiveness of transcranial direct current stimulation in the nociceptive behavior of neuropathic pain rats in development.","authors":"Priscila Centeno Crespo, Leo Anderson Meira Martins, Otávio Garcia Martins, Clara Camacho Dos Reis, Ricardo Netto Goulart, Andressa de Souza, Liciane Fernandes Medeiros, Vanessa Leal Scarabelot, Giovana Duzzo Gamaro, Sabrina Pereira Silva, Marcos Roberto de Oliveira, Iraci Lucena da Silva Torres, Izabel Cristina Custódio de Souza","doi":"10.3934/Neuroscience.2023032","DOIUrl":"10.3934/Neuroscience.2023032","url":null,"abstract":"<p><p>Neuropathic pain (NP) is caused by a lesion that triggers pain chronification and central sensitization and it can develop in a different manner, dependent of age. Recent studies have demonstrated the efficacy of transcranial direct current stimulation (tDCS) for treating NP. Then, we aimed to investigate the effects of tDCS and BDNF levels in neuropathic pain rats in development, with 30 days old in the beginning of experiments. Eight-five male <i>Wistar</i> rats were subjected to chronic constriction injury. After establishment of NP, bimodal tDCS was applied to the rats for eight consecutive days, for 20 minutes each session. Subsequently, nociceptive behavior was assessed at baseline, 14 days after surgery, 1 day and 7 days after the end of tDCS. The rats were sacrificed 8 days after the last session of tDCS. An increase in the nociceptive threshold was observed in rats in development 1 day after the end of tDCS (short-term effect), but this effect was not maintained 7 days after the end of tDCS (long-term effect). Furthermore, brain derived neurotrophic factor (BDNF) levels were analyzed in the frontal cortex, spinal cord and serum using ELISA assays. The neuropathic pain model showed an effect of BDNF in the spinal cord of rats in development. There were no effects of BNDF levels of pain or tDCS in the frontal cortex or serum. In conclusion, tDCS is an effective technique to relieve nociceptive behavior at a short-term effect in neuropathic pain rats in development, and BDNF levels were not altered at long-term effect.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"10 4","pages":"433-446"},"PeriodicalIF":2.7,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10767070/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139377125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microbiomes and Pediatric onset multiple sclerosis (MS): A systematic review.","authors":"Sanaz Mehrabani, Mohsen Rastkar, Narges Ebrahimi, Mahsa Ghajarzadeh","doi":"10.3934/Neuroscience.2023031","DOIUrl":"10.3934/Neuroscience.2023031","url":null,"abstract":"<p><strong>Background: </strong>Gut microbiomes play a role in developing and regulating autoimmune diseases such as multiple sclerosis (MS). We designed this systematic review to summarize the evidence of the effect of gut microbiota in developing pediatric-onset MS.</p><p><strong>Methods: </strong>PubMed, Scopus, EMBASE, Web of Science, Google Scholar, references of the references and conference abstracts were comprehensively searched by two independent researchers. The search was done on January 1<sup>st</sup>, 2023. Data regarding the total number of patients, the name of the first author, publication year, country of origin, mean age, duration of the disease, body mass index (BMI), type of MS, Expanded Disability Status Scale (EDSS), age at disease onset and stool composition were extracted.</p><p><strong>Results: </strong>A literature search revealed 4237 published studies. After removing duplicates, we had 2045 records for evaluation. Twenty-three full texts were evaluated, and four case-control studies remained for systematic review. Three studies were conducted in the United States and one in the Netherlands. The number of participants in included studies ranged between 24 and 68. The mean age of patients at the time of study varied between 11.9 and 17.9 years, and the mean age at the onset of the disease ranged between 11.5 and 14.3 years. Most included patients were female. The results show that median richness (the number of unique taxa identified, which was provided by two studies) was higher in controls, and also Margalef index, which was reported by one study was higher in control group than the case group. The results of two studies also demonstrated that median evenness indexes (taxon distribution, Shannon, Simpson) were higher in control groups, as well as PD index (Faith's phylogenic diversity metric).</p><p><strong>Conclusion: </strong>The result of this systematic review (including four studies) showed disruption of the microbiota-immune balance in pediatric-onset MS cases.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"10 4","pages":"423-432"},"PeriodicalIF":2.7,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10767065/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139377121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}