Improvement of spinal cord injury symptoms by targeting the Bax/Bcl2 pathway and modulating TNF-α/IL-10 using Platelet-Rich Plasma exosomes loaded with dexamethasone.

IF 3.1 Q2 NEUROSCIENCES
AIMS Neuroscience Pub Date : 2023-11-20 eCollection Date: 2023-01-01 DOI:10.3934/Neuroscience.2023026
Naeimeh Akbari-Gharalari, Maryam Ghahremani-Nasab, Roya Naderi, Zeinab Aliyari-Serej, Mohammad Karimipour, Parviz Shahabi, Abbas Ebrahimi-Kalan
{"title":"Improvement of spinal cord injury symptoms by targeting the Bax/Bcl2 pathway and modulating TNF-α/IL-10 using Platelet-Rich Plasma exosomes loaded with dexamethasone.","authors":"Naeimeh Akbari-Gharalari, Maryam Ghahremani-Nasab, Roya Naderi, Zeinab Aliyari-Serej, Mohammad Karimipour, Parviz Shahabi, Abbas Ebrahimi-Kalan","doi":"10.3934/Neuroscience.2023026","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal cord injury (SCI) is a debilitating condition that results in impaired sensory and motor function due to the limited self-regenerative ability of the spinal cord. To address this issue, combination therapy has been proposed as an effective treatment strategy for SCI regeneration. In this study, Platelet-Rich Plasma (PRP)-derived exosomes loaded with dexamethasone were utilized in a mouse model of SCI compression. PRP-derived exosomes loaded with dexamethasone (Dex) were prepared using ultracentrifugation and sonication methods and were administered to the mice via intravenous injection. Following a four-week duration, behavioral assessments were administered to assess functional recuperation, and diverse metrics encompassing the expression of genes associated with apoptosis and antiapoptosis, serum cytokine concentrations and tissue sampling were subjected to thorough examination. The results of this study demonstrated that mice treated with PRP-derived exosomes loaded with Dex (ExoDex) exhibited altered levels of TNF-α and IL-10, along with decreased Bax and increased Bcl2 expression in comparison to the model group. Furthermore, intravenously injected ExoDex reduced the size of the lesion site, lymphocyte infiltration, vacuolation, cavity size and tissue disorganization while also improving locomotor recovery. We propose that the utilization of exosome-loaded Dex therapy holds potential as a promising and clinically relevant approach for injured spinal cord repair. However, further extensive research is warranted in this domain to validate and substantiate the outcomes presented in this study.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"10 4","pages":"332-353"},"PeriodicalIF":3.1000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10767060/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/Neuroscience.2023026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Spinal cord injury (SCI) is a debilitating condition that results in impaired sensory and motor function due to the limited self-regenerative ability of the spinal cord. To address this issue, combination therapy has been proposed as an effective treatment strategy for SCI regeneration. In this study, Platelet-Rich Plasma (PRP)-derived exosomes loaded with dexamethasone were utilized in a mouse model of SCI compression. PRP-derived exosomes loaded with dexamethasone (Dex) were prepared using ultracentrifugation and sonication methods and were administered to the mice via intravenous injection. Following a four-week duration, behavioral assessments were administered to assess functional recuperation, and diverse metrics encompassing the expression of genes associated with apoptosis and antiapoptosis, serum cytokine concentrations and tissue sampling were subjected to thorough examination. The results of this study demonstrated that mice treated with PRP-derived exosomes loaded with Dex (ExoDex) exhibited altered levels of TNF-α and IL-10, along with decreased Bax and increased Bcl2 expression in comparison to the model group. Furthermore, intravenously injected ExoDex reduced the size of the lesion site, lymphocyte infiltration, vacuolation, cavity size and tissue disorganization while also improving locomotor recovery. We propose that the utilization of exosome-loaded Dex therapy holds potential as a promising and clinically relevant approach for injured spinal cord repair. However, further extensive research is warranted in this domain to validate and substantiate the outcomes presented in this study.

用富含地塞米松的血小板血浆外泌体靶向Bax/Bcl2通路并调节TNF-α/IL-10,从而改善脊髓损伤症状。
脊髓损伤(SCI)是一种使人衰弱的疾病,由于脊髓的自我再生能力有限,会导致感觉和运动功能受损。为解决这一问题,人们提出了综合疗法作为脊髓损伤再生的有效治疗策略。在这项研究中,富血小板血浆(PRP)衍生的外泌体负载地塞米松,被用于SCI压迫小鼠模型。研究人员采用超速离心和超声方法制备了含有地塞米松(Dex)的血小板富集血浆衍生外泌体,并通过静脉注射给小鼠服用。持续四周后,对小鼠进行行为评估,以评估其功能恢复情况,并对包括与细胞凋亡和抗细胞凋亡相关的基因表达、血清细胞因子浓度和组织取样在内的各种指标进行全面检查。研究结果表明,与模型组相比,用含有Dex的PRP衍生外泌体(ExoDex)治疗的小鼠表现出TNF-α和IL-10水平的改变,以及Bax表达的减少和Bcl2表达的增加。此外,静脉注射 ExoDex 减少了病变部位的大小、淋巴细胞浸润、空泡化、空腔大小和组织紊乱,同时还改善了运动恢复。我们认为,利用外泌体加载的 Dex 疗法有望成为一种具有临床相关性的损伤脊髓修复方法。然而,在这一领域还需要进一步广泛的研究,以验证和证实本研究中提出的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Neuroscience
AIMS Neuroscience NEUROSCIENCES-
CiteScore
4.20
自引率
0.00%
发文量
26
审稿时长
8 weeks
期刊介绍: AIMS Neuroscience is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers from all areas in the field of neuroscience. The primary focus is to provide a forum in which to expedite the speed with which theoretical neuroscience progresses toward generating testable hypotheses. In the presence of current and developing technology that offers unprecedented access to functions of the nervous system at all levels, the journal is designed to serve the role of providing the widest variety of the best theoretical views leading to suggested studies. Single blind peer review is provided for all articles and commentaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信