{"title":"Can Wharton jelly derived or adipose tissue derived mesenchymal stem cell can be a treatment option for duchenne muscular dystrophy? Answers as transcriptomic aspect.","authors":"Eda Sun, Erdal Karaoz","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Introduction: </strong>Mesenchymal stem cells (MSCs) are able to differentiate into several cell lineages including skeletal muscle. In addition to their differentiation capacities, they have the ability to transfer their content genomic information horizontally through their exosomes and fusion abilities, as we have shown in our previous clinic study on Duchenne Muscular Dystrophy (DMD) patients, dystrophin expression increased after MSC treatment. Therefore, this study aimed to compare the transcriptomic properties of Wharton's jelly derived (WJ-) MSC and Adipose tissue (AT-) derived MSC, which are the two most preferred sources in MSC treatments applied in DMD.</p><p><strong>Methods: </strong>Both MSC cell lines obtained from ATCC (PCS-500-010; PCS-500-011) were characterized by flow cytometry then WJ-MSC and AT-MSC cell lines were sequenced via RNA-SEQ. R language was used to obtain the differentially expressed genes (DEGs) and differentially expressed miRNAs, respectively. Additionally, in order to support the results of our study, a gene expression profile data set of DMD patients (GSE1004) were acquired from Gene Expression Omnibus (GEO) database.</p><p><strong>Results: </strong>Here, we demonstrated that activated WNT signaling and downregulated TGF-β pathways under the control of decreased mir-24 which are involved in myogenic differentiation are differentially expressed in WJ-MSC. We have shown that the expression of mir-199a-5p, which is known to increase in exosomes of DMD patients, is less in WJ-MSC. Additionally, we have shown activated PI3K/Akt pathway, which is controlling mitochondria transfer via Tunnelling Nanotube as a new perspective in cellular therapies in myodegenerative diseases, in WJ-MSC more than in AT-MSCs.</p><p><strong>Conclusion: </strong>Summing up, WJ-MSC, which we recommend as an appropriate source candidate due to its immune-regulation properties, stands forward as a preferable source in the cellular treatment of DMD patients due to its transcriptomic aspect.</p>","PeriodicalId":7657,"journal":{"name":"American journal of stem cells","volume":"9 4","pages":"57-67"},"PeriodicalIF":1.8,"publicationDate":"2020-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486554/pdf/ajsc0009-0057.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38379463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Themistoklis Feretis, Charalampos Katselis, Ioannis G Papanikolaou, Konstantinos Apostolou, Spyridon Tsikalakis, Konstantinos G Toutouzas, George Theodoropoulos, Eleni Andrianna Trigka, Angelica A Saetta, Nicholas Alexakis, Manousos Konstandoulakis, Kalliopi Tsarea, Maria Karamperi, Dimitrios Kletsas, Efstratios Patsouris, Andreas Manouras, Georgios C Zografos, Apostolos Papalois
{"title":"ATSC transplantation contributes to liver regeneration following paracetamol-induced acute liver injury through differentiation into hepatic-like cells.","authors":"Themistoklis Feretis, Charalampos Katselis, Ioannis G Papanikolaou, Konstantinos Apostolou, Spyridon Tsikalakis, Konstantinos G Toutouzas, George Theodoropoulos, Eleni Andrianna Trigka, Angelica A Saetta, Nicholas Alexakis, Manousos Konstandoulakis, Kalliopi Tsarea, Maria Karamperi, Dimitrios Kletsas, Efstratios Patsouris, Andreas Manouras, Georgios C Zografos, Apostolos Papalois","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Introduction: </strong>Drug-induced liver injury (DILI) is a leading cause of acute liver injury (ALI). Acetaminophen (also termed paracetamol), can often be found in drugs that may be abused (i.e., prescription for pain relief). Animal experiments have shown that mesenchymal stem cell transplantation can ameliorate or even reverse hepatic injury.</p><p><strong>Material and methods: </strong>ALI was induced in Wistar rats using paracetamol. ATSCs were transplanted via the intravenous, portal vein, or intrahepatic route directly onto the liver parenchyma. Histological evaluation was conducted to assess drug-induced injury following transplantation. Fluorescence in situ hybridization (FISH) was used to verify the location of stem cells on the liver parenchyma. The effect of those cells on liver regeneration was tested by immunohistochemistry for hepatic growth factor (HGF). In addition, reverse transcription-quantitative PCR (qRT-PCR) was used to assess hepatic growth factor (HGF), hepatic nuclear factor 4α (HNF4α), cytochrome P450 1A2 (CYP1A2) and α-fetoprotein (AFP) mRNA expression.</p><p><strong>Results: </strong>Immunohistochemical staining for HGF was stronger in the transplanted groups than that in the control group (P<0.001). HNF4α and HGF mRNA levels were increased on day 7 following transplantation (P<0.001 and P=0.009, respectively). CYP1A2 mRNA levels were also increased (P=0.013) in the intravenous groups, while AFP levels were higher in the intrahepatic groups (P=0.006). ATSC transplantation attenuates ALI injury and promotes liver regeneration. Furthermore, expression of specific hepatic enzymes points to ATSC hepatic differentiation.</p><p><strong>Conclusion: </strong>The study showed the positive effects of transplanted adipose tissue stem cells (ATSCs) on liver regeneration (LG) through hepatotrophic factors. Furthermore, increased expression of hepatic specific proteins was recorded in ATSC transplanted groups that indicate stem cells differentiation into hepatic cells.</p>","PeriodicalId":7657,"journal":{"name":"American journal of stem cells","volume":"9 3","pages":"36-56"},"PeriodicalIF":1.8,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7364386/pdf/ajsc0009-0036.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38184395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hair cell regeneration from inner ear progenitors in the mammalian cochlea.","authors":"Shasha Zhang, Ruiying Qiang, Ying Dong, Yuan Zhang, Yin Chen, Han Zhou, Xia Gao, Renjie Chai","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Cochlear hair cells (HCs) are the mechanoreceptors of the auditory system, and because these cells cannot be spontaneously regenerated in adult mammals, hearing loss due to HC damage is permanent. However, cochleae of neonatal mice harbor some progenitor cells that retain limited ability to give rise to new HCs <i>in vivo</i>. Here we review the regulatory factors, signaling pathways, and epigenetic factors that have been reported to play roles in HC regeneration in the neonatal mammalian cochlea.</p>","PeriodicalId":7657,"journal":{"name":"American journal of stem cells","volume":"9 3","pages":"25-35"},"PeriodicalIF":1.8,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7364385/pdf/ajsc0009-0025.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38184394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xia Wu, Shengyu Zou, Fan Wu, Zuhong He, Weijia Kong
{"title":"Role of microRNA in inner ear stem cells and related research progress.","authors":"Xia Wu, Shengyu Zou, Fan Wu, Zuhong He, Weijia Kong","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Deafness is one of the major global health problems that seriously affects the quality of human life. At present, there are no successful treatments for deafness caused by cochlear hair cell (HC) damage. The irreversibility of mammalian hearing impairment is that the inner ear's sensory epithelium cannot repair lost hair cells and neurons through spontaneous regeneration. The goal of stem cell therapy for sensorineural hearing loss is to reconstruct the damaged inner ear structure and achieve functional repair. microRNA (miRNA), as a class of highly conserved endogenous non-coding small RNAs, plays an important role in the development of cochlea and HCs. miRNA also participates in the regulation of stem cell proliferation and differentiation, and plays an important role in the process of regeneration of inner ear HCs, miRNA has a broad application prospect of clinical treatment of hearing loss, which is conducive to solving the medical problem of inner ear HC regeneration.</p>","PeriodicalId":7657,"journal":{"name":"American journal of stem cells","volume":"9 2","pages":"16-24"},"PeriodicalIF":1.8,"publicationDate":"2020-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7218733/pdf/ajsc0009-0016.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37946760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Li-Man Liu, Li-Ping Zhao, Ling-Jie Wu, Luo Guo, Wen-Yan Li, Yan Chen
{"title":"Characterization of the transcriptomes of <i>Atoh1</i>-induced hair cells in the mouse cochlea.","authors":"Li-Man Liu, Li-Ping Zhao, Ling-Jie Wu, Luo Guo, Wen-Yan Li, Yan Chen","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Postnatal mammalian cochlear hair cells (HCs) can be regenerated by direct transdifferentiation or by mitotic regeneration from supporting cells through many pathways, including Atoh1, Wnt, Hedgehog and Notch signaling. However, most new HCs are immature HCs. In this study we used RNA-Seq analysis to compare the differences between the transcriptomes of <i>Atoh1</i> overexpression-induced new HCs and the native HCs, and to define the factors that might help to promote the maturation of new HCs. As expected, we found <i>Atoh1</i>-induced new HCs had obvious HC characteristics as demonstrated by the expression of HC markers such as <i>Pou4f3</i> and Myosin VIIA (Myo7a). However, <i>Atoh1</i>-induced new HCs had significantly lower expression of genes that are related to HC function such as Slc26a5 (<i>Prestin</i>), <i>Slc17a8</i> and <i>Otof</i>. We found that genes related to HC cell differentiation and maturation (<i>Kcnma1</i>, <i>Myo6</i>, <i>Myo7a</i>, <i>Grxcr1</i>, <i>Gfi1</i>, <i>Wnt5a</i>, <i>Fgfr1</i>, <i>Gfi1</i>, <i>Fgf8</i> etc.) had significantly lower expression levels in new HCs compared to native HCs. In conclusion, we found a set of genes that might regulate the differentiation and maturation of new HCs, and these genes might serve as potential new therapeutic targets for functional HC regeneration and hearing recovery.</p>","PeriodicalId":7657,"journal":{"name":"American journal of stem cells","volume":"9 1","pages":"1-15"},"PeriodicalIF":1.8,"publicationDate":"2020-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7076321/pdf/ajsc0009-0001.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37770028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of mesenchymal stem cells injection and low-level laser therapy on bone formation after rapid maxillary expansion: an animal study.","authors":"Sadra Mohaghegh, Hossein Mohammad-Rahimi, Ladan Eslamian, Asghar Ebadifar, Mohammad Reza Badiee, Mohammadhossein Farahani, Masoud Mohebbi Rad, Saeed Reza Motamedian","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Introduction: </strong>One of the most common orthodontic problems is maxillary constriction, which is mostly treated by rapid palatal expansion (RPE). However, its high rate of relapse and prolonged retention period have led to some challenges for orthodontists. To encounter these issues, accelerating bone regeneration can provide long-term stability of expanded maxilla. The present study aimed to evaluate the effect of low-level laser therapy (LLLT), bone marrow-derived mesenchymal stem cells (BMSCs) and their combination on promoting bone regeneration of the inter-maxillary suture after RPE in rats.</p><p><strong>Materials and method: </strong>Total of 60 rats went under RPE treatment. After 7 days, retention period started and interventions (group A, Control (saline); group B, LLLT; group C, BMSCs; group D, LLLT + BMSCs) were performed in the sutural area. After 21 days, radiographic and histological analyses were done. Histological analyses were conducted to evaluate the following criteria of the newly formed bone: the number of osteoblasts, new bone formation, vascularization, connective tissue. Moreover, sutural width was assessed in histologic images. To evaluate bone density at suture area, gray scale and Hounsfield Unit values were measured based on the occlusal radiographic and Micro-Computed topography images respectively.</p><p><strong>Results: </strong>Only in group C and D, osteoblasts and new bone formation were observed in all of the samples. There were no significant differences among the study groups regarding the post-treatment sutural width (P > 0.05). In the radiographic analysis, only group D showed more bone density compared to the control group (P = 0.022). Similarly, in micro-CT analysis, the most bone density was observed in group D which was significantly more than the control group (P = 0.013).</p><p><strong>Conclusion: </strong>Our findings suggest that the application of LLLT and BMSCs is the most beneficial approach in accelerating bone regeneration in the inter-maxillary suture.</p>","PeriodicalId":7657,"journal":{"name":"American journal of stem cells","volume":"9 5","pages":"78-88"},"PeriodicalIF":1.8,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7811931/pdf/ajsc0009-0078.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10638771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ariel Yusupov, Daniel Popovsky, Lyaba Mahmood, Andrew S Kim, Alex E Akman, Hang Yuan
{"title":"The nonavalent vaccine: a review of high-risk HPVs and a plea to the CDC.","authors":"Ariel Yusupov, Daniel Popovsky, Lyaba Mahmood, Andrew S Kim, Alex E Akman, Hang Yuan","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Two of the leading strategies to prevent cervical cancer are prophylactic human papillomavirus (HPV) vaccination and routine Papanicolaou (Pap) testing. However, regardless of being vaccinated with first-generation (bivalent and quadrivalent) HPV vaccines at the recommended dosing schedule, many women are still found to have low- and high-grade cervical intraepithelial lesions. Studies have shown that this is largely due to: (1) first-generation vaccines only protecting against 70% of high-risk HPV types that cause cervical cancer (HPVs 16/18) and (2) vaccinated women being more prone to infection with non-protected high-risk HPV types than unvaccinated women. Fortunately, the FDA recently approved a nonavalent vaccine that protects against 5 additional high-risk HPV types that cause 20% of cervical cancers (HPVs 31/33/45/52/58), which is the only HPV vaccine currently available in the United States. Although the Advisory Committee on Immunization Practices (ACIP) recommends the nonavalent vaccine in men and women up to the age of 45 years, it does not recommend the nonavalent vaccine in those previously vaccinated with 3 doses of bivalent or quadrivalent vaccine, deeming them \"adequately vaccinated\". As this population is most at risk, this review serves to provide background and argue for a change in their recommendation.</p>","PeriodicalId":7657,"journal":{"name":"American journal of stem cells","volume":"8 3","pages":"52-64"},"PeriodicalIF":1.8,"publicationDate":"2019-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6971474/pdf/ajsc0008-0052.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37574583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Therapeutic potential of human umbilical cord derived mesenchymal stem cells on rat model of liver fibrosis.","authors":"Mona Farouk Mansour, Sahar Mansour Greish, Ahmed Taher El-Serafi, Howayda Abdelall, Yasser Mohamed El-Wazir","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>End-stage liver disease is a worldwide cause of morbidity and mortality, which is associated with a considerable economic burden. As the disease progresses, fibrosis will replace the hepatic architecture and compromise liver functions. The regenerative approach for the injured liver can provide a hope for these patients; however, it is still facing many challenges. In the current study, we aimed at (1) assessing hepatic regenerative capacity of mesenchymal stem cells, isolated from human umbilical cord blood (HMSCs), in a rat model of carbon-tetrachloride (CCL4) induced liver fibrosis, (2) comparing the therapeutic effects with other cell populations derived from umbilical cord blood and (3) evaluating the host response to the human-derived cells. Fifteen rats received either the whole mononuclear cell fraction (HMNCs), CD34-ve subpopulation or HMSCs. A fourth group did not receive any treatment and another group was left without induction of fibrosis as positive and negative controls. All groups that received cellular treatment showed homing of the human cells and improvement of the liver architecture and functional capacity. The groups received CD34-ve cells and HMSCs had the most efficient improvement in liver functions, microscopic regenerative markers and histological appearance while the least immune reaction was noted with HMSCs. HUCB-MSCs showed significant immunemodulatory effect on rat immune cells. This study can provide a clue about a simple and effective method for the management of fibrotic liver diseases.</p>","PeriodicalId":7657,"journal":{"name":"American journal of stem cells","volume":"8 1","pages":"7-18"},"PeriodicalIF":1.8,"publicationDate":"2019-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6526361/pdf/ajsc0008-0007.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37284298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Signaling pathways in cerebellar granule cells development.","authors":"Li Wang, Yuan Liu","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Cerebellar granule cells originate from precursors located at the dorsal region of rhombomere in the hindbrain of embryos. They undergo proliferation from embryo to post-natal period so as to form the major cell type of the cerebellum. The development of granule cell is not only highly dependent on the cerebellar intrinsic environment, but also is regulated by serials of transcription factors on different signaling pathways. Therefore, in this manuscript the signaling pathways participating in the proliferation and differentiation of granular cells during normal development was reviewed.</p>","PeriodicalId":7657,"journal":{"name":"American journal of stem cells","volume":"8 1","pages":"1-6"},"PeriodicalIF":1.8,"publicationDate":"2019-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6526362/pdf/ajsc0008-0001.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37284297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Histopathological evaluation of mesenchymal stem cells in the healing of anastomosed carotid arteries.","authors":"Adnan Altun, Cengiz Çokluk, Ercan Yarar, Enis Kuruoğlu, Keramettin Aydın, Eyüp Genç, Sezgin Gunes, Levent Yıldız, Abdullah Hilmi Marangoz","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The objective of this study was to evaluate the influence of mesenchymal stem cells on the healing of experimental carotid artery anastomoses histopathologically. Twenty-four female Sprague-Dawley rats were used in this study. After random separation of the subjects into two groups, in both groups carotid arteries were transected and anastomosed in end-to-end fashion. Anastomoses were locally treated with 1 ml 0.09% NaCl, and 1 ml mesenchymal stem cell suspension (1×10<sup>6</sup> cells) in control and trial groups, respectively. Anastomoses were wrapped with an 8 mm sheet of surgicel and soaked with BioGlue in order to sequestrate the stem cells. After patencies were confirmed via Doppler USG, surgical site was closed with 2/0 silk sutures. Histopathological evaluation was carried out after 4 weeks. In respect to endothelial continuity, vessel patency (along with presence or absence of restenosis), integrities of internal and external elastic laminae, muscularis and adventitia; no statistically significant differences were present between the trial and control groups. In Trial and Control Groups, luminal thrombus was present in 8 (66.6%) and 3 (25%) of the 12 subjects, respectively. The difference was statistically significant (P < 0.05). Recanalization was present in 6 subjects in trial group; 1 subjects in Control Group, respectively. Our results suggest that local administration of mesenchyme stem cell does not have a positive influence on success of an anastomosis.</p>","PeriodicalId":7657,"journal":{"name":"American journal of stem cells","volume":"8 1","pages":"19-27"},"PeriodicalIF":1.8,"publicationDate":"2019-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6526360/pdf/ajsc0008-0019.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37284299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}