American journal of stem cells最新文献

筛选
英文 中文
Hematopoietic stem cells derived from human umbilical cord ameliorate cisplatin-induced acute renal failure in rats. 源自人类脐带的造血干细胞可改善顺铂诱发的大鼠急性肾衰竭。
IF 1.8
American journal of stem cells Pub Date : 2014-09-05 eCollection Date: 2014-01-01
Rokaya H Shalaby, Laila A Rashed, Alaa E Ismaail, Naglaa K Madkour, Sherien H Elwakeel
{"title":"Hematopoietic stem cells derived from human umbilical cord ameliorate cisplatin-induced acute renal failure in rats.","authors":"Rokaya H Shalaby, Laila A Rashed, Alaa E Ismaail, Naglaa K Madkour, Sherien H Elwakeel","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Injury to a target organ can be sensed by bone marrow stem cells that migrate to the site of damage, undergo differentiation, and promote structural and functional repair. This remarkable stem cell capacity prompted an investigation of the potential of mesenchymal and hematopoietic stem cells to cure acute renal failure. On the basis of the recent demonstration that hematopoietic stem cells (HSCs) can differentiate into renal cells, the current study tested the hypothesis that HSCs can contribute to the regeneration of renal tubular epithelial cells after renal injury. HSCs from human umbilical cord blood which isolated and purified by magnetic activated cell sorting were transplanted intraperitoneal into acute renal failure (ARF) rats which was established by a single dose of cisplatin 5 mg/kg for five days. The Study was carried on 48 male white albino rats, of average weight 120-150 gm. The animals were divided into 4 groups, Group one Served as control and received normal saline throughout the experiments. Group two (model control) received a single dose of cisplatin. Group three and four male-albino rats with induced ARF received interapritoneally (HSCs) at two week and four week respectively. Injection of a single dose of cisplatin resulted in a significant increase in serum creatinine and urea levels, histo-pathological examination of kidney tissue from cisplatin showed severe nephrotoxicity in which 50-75% of glomeruli and renal tubules exhibited massive degenerative change. Four weeks after HSC transplantation, Serum creatinine and urea nitrogen decreased 3.5 times and 2.1 times as well as HGF, IGF-1, VEGF and P53 using quantitative real-time PCR increased 4.3 times, 3.2, 2.4 and 4.2 times compared to ARF groups, respectively. The proliferation of cell nuclear antigen (PCNA)-positive cells (500.083±35.167) was higher than that in the cisplatin groups (58.612±15.743). In addition, the transplanted umbilical cord hematopoietic stem cells UC-HSCs could reside in local injury sites, leading to the relief of hyperemia and inflammation, but no obvious transdifferentiation into renal-like cells. The results lay the foundation for further study on the potential application of UC-HSCs in human disease and Because of their availability; HSC may be useful for cell replacement therapy of acute renal failure. </p>","PeriodicalId":7657,"journal":{"name":"American journal of stem cells","volume":"3 2","pages":"83-96"},"PeriodicalIF":1.8,"publicationDate":"2014-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163607/pdf/ajsc0003-0083.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32677466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Oct4 protein: more than a magic stemness marker. Oct4蛋白:不仅仅是一个神奇的茎干标记。
IF 1.8
American journal of stem cells Pub Date : 2014-09-05 eCollection Date: 2014-01-01
Dana Zeineddine, Aya Abou Hammoud, Mohamad Mortada, Hélène Boeuf
{"title":"The Oct4 protein: more than a magic stemness marker.","authors":"Dana Zeineddine,&nbsp;Aya Abou Hammoud,&nbsp;Mohamad Mortada,&nbsp;Hélène Boeuf","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The Oct4 protein, encoded by the Pou5f1 gene was the very first master gene, discovered 25 years ago, to be absolutely required for the stemness properties of murine and primate embryonic stem cells. This transcription factor, which has also been shown to be essential for somatic cell reprogrammation, displays various functions depending upon its level of expression and has been quoted as a \"rheostat\" gene. Oct4 protein is in complexes with many different partners and its activity depends upon fine post-translational modifications. This review aims at revisiting some properties of this protein, which has not yet delivered all its potentialities. </p>","PeriodicalId":7657,"journal":{"name":"American journal of stem cells","volume":"3 2","pages":"74-82"},"PeriodicalIF":1.8,"publicationDate":"2014-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163606/pdf/ajsc0003-0074.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32677518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phenotype-dependent role of the L-type calcium current in embryonic stem cell derived cardiomyocytes. l型钙电流在胚胎干细胞来源的心肌细胞中的表型依赖作用。
IF 1.8
American journal of stem cells Pub Date : 2014-03-13 eCollection Date: 2014-01-01
Pauline Dan, Zheng Zeng, Ying Li, Yang Qu, Leif Hove-Madsen, Glen F Tibbits
{"title":"Phenotype-dependent role of the L-type calcium current in embryonic stem cell derived cardiomyocytes.","authors":"Pauline Dan,&nbsp;Zheng Zeng,&nbsp;Ying Li,&nbsp;Yang Qu,&nbsp;Leif Hove-Madsen,&nbsp;Glen F Tibbits","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Although the L-type Ca(2+) current (ICa,L) plays an important role in cardiac contractility and pacemaking, its role in embryonic stem-cell derived cardiomyocytes (ESC-CMs) has not yet been explored in detail. We used patch-clamp techniques to characterize ICa,L, action potential properties, and nifedipine (an ICa,L blocker) sensitivity on spontaneously contracting embryoid bodies (EBs) or isolated ESC-CMs. Cellular preparations exhibited differential sensitivity to nifedipine, with substantial variation in the dose required to abolish automaticity. Isolated ESC-CMs expressing nodal-like action potentials were highly sensitive to nifedipine; 1 nM significantly decreased firing rate, diastolic depolarization rate (DDR), and upstroke velocity, and 10 nM completely abolished spontaneous activity. In contrast, ESC-CMs expressing atrial-like action potentials were relatively nifedipine-resistant, requiring 10 μM to arrest automaticity; 1 μM significantly decreased upstroke velocity while the firing rate and DDR were unaffected. Nodal-like cells exhibited a more negative voltage for half-maximal ICa activation (-30 ± 1 mV vs. -20 ± 3 mV; p<0.05) and slower inactivation (71 ± 10 ms vs. 43 ± 3 ms; p<0.05) than atrial-like cells. Our data indicate that ICa,L differentially regulates automaticity and chronotropy in nodal-like ESC-CMs, and primarily links excitation to contraction in atrial-like ESC-CMs by contributing to the upstroke phase of the action potential. </p>","PeriodicalId":7657,"journal":{"name":"American journal of stem cells","volume":"3 1","pages":"37-45"},"PeriodicalIF":1.8,"publicationDate":"2014-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3960756/pdf/ajsc0003-0037.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32200779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of transplantation of human embryonic stem cell-derived neural progenitor cells on adult neurogenesis in aged hippocampus. 人胚胎干细胞来源的神经祖细胞移植对老年海马成体神经发生的影响。
IF 1.8
American journal of stem cells Pub Date : 2014-03-13 eCollection Date: 2014-01-01
Sufang Liu, Changsheng Li, Ying Xing, Feng Tao
{"title":"Effect of transplantation of human embryonic stem cell-derived neural progenitor cells on adult neurogenesis in aged hippocampus.","authors":"Sufang Liu,&nbsp;Changsheng Li,&nbsp;Ying Xing,&nbsp;Feng Tao","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Adult neurogenesis occurs within the special microenvironment in the subgranular zone of the hippocampus and the subventricular zone of the lateral ventricle of the mammalian brain. The special microenvironment is known as neurogenic niches. Multiple cell types, including endothelial cells, astroglia, ependymal cells, immature progeny of neural stem cells, and mature neurons, comprise the neurogenic niche. Differentiation of embryonic stem cells towards the neural lineage results in the generation of different neuronal subtypes and non-neuronal cells (mainly astrocytes). Therefore, it is reasonable to hypothesize that transplantation of human embryonic stem cell-derived neural progenitor cells can be used to modify neurogenic niches for facilitating adult neurogenesis. Furthermore, if generated new neurons are functionally integrated into the existing circuits of the aged hippocampus, synaptic plasticity in the hippocampus and learning/memory functions in aged mice should be enhanced. In this article, we provide a comprehensive review of the concepts in the regulation of adult neurogenesis by neurogenic niches and discuss the molecular mechanisms underlying the effect of stem cell transplantation on adult neurogenesis in aged hippocampus. </p>","PeriodicalId":7657,"journal":{"name":"American journal of stem cells","volume":"3 1","pages":"21-6"},"PeriodicalIF":1.8,"publicationDate":"2014-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3960754/pdf/ajsc0003-0021.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32200776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid isolation of integrin rich multipotent stem cell pool and reconstruction of mouse epidermis equivalent. 富整合素多能干细胞库的快速分离及小鼠表皮等效物的重建。
IF 1.8
American journal of stem cells Pub Date : 2014-03-13 eCollection Date: 2014-01-01
Sushil Kumar, Shiv Poojan, Vikas Verma, Mukesh K Verma, Mohatashim Lohani
{"title":"Rapid isolation of integrin rich multipotent stem cell pool and reconstruction of mouse epidermis equivalent.","authors":"Sushil Kumar,&nbsp;Shiv Poojan,&nbsp;Vikas Verma,&nbsp;Mukesh K Verma,&nbsp;Mohatashim Lohani","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>We describe here epidermis reconstruction using multipotent mouse epidermal stem cells (EpSCs) enriched from keratinocyte isolates exploting exclusively the stem cell-adhesive property. This method excluded flowcytometry and was swift. Percent enrichment was measured by the uptake of Propidium iodide and Hoechst-33342 dye using flowcytometry to determine EpSCs yield. The sorted cells were characterized by analysis of stem cell markers using immunocytochemistry and immunoblotting techniques. Epidermis was reconstructed using the identified seeding density of EpSCs and the airlift tissue culture. Histology of natural vs reconstructed mammalian epidermis was also compared. Results showed a radical improvement of near 99% in the yield of integrin overexpressing EpSCs. The enriched EpSCs tested positive for biomarkers namely cytokeratin K-15 and, K-14, p63, beta-1-integrin, CD34 and could be passaged for longer durations. Adhesion sorted cells reconstructed the epidermis. The process of tissue reconstruction was faster using the adhesion sorted cells than the FACS sorted EpSCs. The product bioengineered using multipotent EpSCs was histologically similar to normal epidermis. Features like strata basalae, spinosum, granulosum, and corneum were alike real epidermis. The reconstructed epidermis displayed normal homeostasis, which can be considered an approximating actual product for investigative dermatology, toxicology, therapeutic research, regenerative medicine, and tissue engineering. </p>","PeriodicalId":7657,"journal":{"name":"American journal of stem cells","volume":"3 1","pages":"27-36"},"PeriodicalIF":1.8,"publicationDate":"2014-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3960755/pdf/ajsc0003-0027.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32200777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decellularized matrices for cardiovascular tissue engineering. 用于心血管组织工程的脱细胞基质。
IF 1.8
American journal of stem cells Pub Date : 2014-03-13 eCollection Date: 2014-01-01
Francesco Moroni, Teodelinda Mirabella
{"title":"Decellularized matrices for cardiovascular tissue engineering.","authors":"Francesco Moroni, Teodelinda Mirabella","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Cardiovascular disease (CVD) is one of the leading causes of death in the Western world. The replacement of damaged vessels and valves has been practiced since the 1950's. Synthetic grafts, usually made of bio-inert materials, are long-lasting and mechanically relevant, but fail when it comes to \"biointegration\". Decellularized matrices, instead, can be considered biological grafts capable of stimulating in vivo migration and proliferation of endothelial cells (ECs), recruitment and differentiation of mural cells, finally, culminating in the formation of a biointegrated tissue. Decellularization protocols employ osmotic shock, ionic and non-ionic detergents, proteolitic digestions and DNase/RNase treatments; most of them effectively eliminate the cellular component, but show limitations in preserving the native structure of the extracellular matrix (ECM). In this review, we examine the current state of the art relative to decellularization techniques and biological performance of decellularized heart, valves and big vessels. Furthermore, we focus on the relevance of ECM components, native and resulting from decellularization, in mediating in vivo host response and determining repair and regeneration, as opposed to graft corruption. </p>","PeriodicalId":7657,"journal":{"name":"American journal of stem cells","volume":"3 1","pages":"1-20"},"PeriodicalIF":1.8,"publicationDate":"2014-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3960753/pdf/ajsc0003-0001.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32200778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activation and crosstalk between TNF family receptors in umbilical cord blood cells is not responsible for loss of engraftment capacity following culture. 脐带血细胞中 TNF 家族受体的激活和串扰并不是培养后丧失移植能力的原因。
IF 1.8
American journal of stem cells Pub Date : 2013-12-22 eCollection Date: 2013-01-01
Keren Mizrahi, Nadir Askenasy
{"title":"Activation and crosstalk between TNF family receptors in umbilical cord blood cells is not responsible for loss of engraftment capacity following culture.","authors":"Keren Mizrahi, Nadir Askenasy","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Umbilical cord blood (UCB) is a rich source of hematopoietic progenitors for transplantation. Murine and human progenitors are insensitive to apoptotic signaling mediated by the TNF family receptors, however extension of culture over 48 hours is accompanied by severe deterioration in engraftment and hematopoietic reconstituting capacity. In this study we assessed crosstalk between the Fas, TNF and TRAIL receptors, and questioned whether it contributes to increased mortality and decreased activity of UCB progenitors following extended ex vivo culture for 72 hours. The well-characterized TNF-induced expression of Fas is mediated by both TNF receptors, yet the TNF receptors determine survival rather than Fas: superior viability of TNF-R1 progenitors. Additional cross talk includes upregulation of TRAIL-R1 by Fas-ligand, mediated both by fast cycling and inductive crosstalk. These inductive interactions are not accompanied by concomitant sensitization of progenitors to receptor-mediated apoptosis during extended culture, but rather decreased fractional apoptosis in expanded progenitor subsets expressing the receptors. TRAIL upregulates both TRAIL-R1 and TRAIL-R2, accompanied by commensurate susceptibility to spontaneous apoptosis. The current data reveal inductive crosstalk between TNF family receptors, which are largely dissociated from the sensitivity of hematopoietic progenitors to apoptosis. Activation of Fas, TNF and TRAIL receptors and excessive apoptosis are not responsible for loss of engraftment and impaired reconstituting activity of UCB progenitors following extended culture. </p>","PeriodicalId":7657,"journal":{"name":"American journal of stem cells","volume":"2 3","pages":"155-64"},"PeriodicalIF":1.8,"publicationDate":"2013-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3875276/pdf/ajsc0002-0155.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32006404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Therapeutic potential of Pnmt+ primer cells for neuro/myocardial regeneration. Pnmt+引物细胞对神经/心肌再生的治疗潜力。
IF 1.8
American journal of stem cells Pub Date : 2013-12-22
Aaron Owji, Namita Varudkar, Steven N Ebert
{"title":"Therapeutic potential of Pnmt+ primer cells for neuro/myocardial regeneration.","authors":"Aaron Owji,&nbsp;Namita Varudkar,&nbsp;Steven N Ebert","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Phenylethanolamine n-methyltransferase (Pnmt) catalyzes the conversion of norepinephrine into epinephrine, and thus serves as a marker of adrenergic cells. In adults, adrenergic cells are present in the adrenal medullae and the central and peripheral (sympathetic) nervous systems where they play key roles in stress responses and a variety of other functions. During early embryonic development, however, Pnmt first appears in the heart where it is associated with specialized myocytes in the pacemaking and conduction system. There is a transient surge in cardiac Pnmt expression beginning when the first myocardial contractions occur, before any nerve-like or neural crest cells appear in the heart. This early expression of Pnmt denotes a mesodermal origin of these \"Instrinsic Cardiac Adrenergic\" (ICA) cells. Interestingly, Pnmt+ cells are found in all four chambers of the developing heart, but by adult stages, are found primarily concentrated on the left side of the heart. This regionalized expression occurs in the left atrium and in specific regions of the left ventricle roughly corresponding to basal, mid, and apical sections. A second distinct population of Pnmt-expressing (Pnmt+) cells enters the embryonic heart from invading neural crest, and these \"Neural Crest-Derived\" (NCD) Pnmt+ cells appear to give rise to a subpopulation(s) of cardiac neurons. Pnmt expression thus serves as a marker not only for adrenergic cells, but also for precursor or \"primer\" cells destined to become specialized myocytes and neurons in the heart. This review discusses the distribution of Pnmt in the heart during development, including the types of cells where it is expressed, and their potential use for regenerative medicine therapies for cardiovascular disease. </p>","PeriodicalId":7657,"journal":{"name":"American journal of stem cells","volume":"2 3","pages":"137-54"},"PeriodicalIF":1.8,"publicationDate":"2013-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3875277/pdf/ajsc0002-0137.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32006401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A robust method to derive functional neural crest cells from human pluripotent stem cells. 一种从人多能干细胞中获得功能性神经嵴细胞的稳健方法。
IF 1.8
American journal of stem cells Pub Date : 2013-06-30 Print Date: 2013-01-01
Faith R Kreitzer, Nathan Salomonis, Alice Sheehan, Miller Huang, Jason S Park, Matthew J Spindler, Paweena Lizarraga, William A Weiss, Po-Lin So, Bruce R Conklin
{"title":"A robust method to derive functional neural crest cells from human pluripotent stem cells.","authors":"Faith R Kreitzer,&nbsp;Nathan Salomonis,&nbsp;Alice Sheehan,&nbsp;Miller Huang,&nbsp;Jason S Park,&nbsp;Matthew J Spindler,&nbsp;Paweena Lizarraga,&nbsp;William A Weiss,&nbsp;Po-Lin So,&nbsp;Bruce R Conklin","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Neural crest (NC) cells contribute to the development of many complex tissues of all three germ layers during embryogenesis, and its abnormal development accounts for several congenital birth defects. Generating NC cells-including specific subpopulations such as cranial, cardiac, and trunk NC cells-from human pluripotent stem cells will provide a valuable model system to study human development and disease. Here, we describe a rapid and robust NC differentiation method called \"LSB-short\" that is based on dual SMAD pathway inhibition. This protocol yields high percentages of NC cell populations from multiple human induced pluripotent stem and human embryonic stem cell lines in 8 days. The resulting cells can be propagated easily, retain NC marker expression over multiple passages, and can spontaneously differentiate into several NC-derived cell lineages, including smooth muscle cells, peripheral neurons, and Schwann cells. NC cells generated by this method represent cranial, cardiac and trunk NC subpopulations based on global gene expression analyses, are similar to in vivo analogues, and express a common set of NC alternative isoforms. Functionally, they are also able to migrate appropriately in response to chemoattractants such as SDF-1, FGF8b, and Wnt3a. By yielding NC cells that likely represent all NC subpopulations in a shorter time frame than other published methods, our LSB-short method provides an ideal model system for further studies of human NC development and disease. </p>","PeriodicalId":7657,"journal":{"name":"American journal of stem cells","volume":"2 2","pages":"119-31"},"PeriodicalIF":1.8,"publicationDate":"2013-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3708511/pdf/ajsc0002-0119.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31230726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pancytopenia related to dental adhesive in a young patient. 年轻患者全血细胞减少症与牙黏合剂的关系。
IF 1.8
American journal of stem cells Pub Date : 2013-06-30 Print Date: 2013-01-01
Farhard Khimani, Ryan Livengood, Olukemi Esan, Jeffrey A Vos, Vivek Abhyankar, Ludwig Gutmann, William Tse
{"title":"Pancytopenia related to dental adhesive in a young patient.","authors":"Farhard Khimani,&nbsp;Ryan Livengood,&nbsp;Olukemi Esan,&nbsp;Jeffrey A Vos,&nbsp;Vivek Abhyankar,&nbsp;Ludwig Gutmann,&nbsp;William Tse","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Copper deficiency resulting in hypocupremia is a rare cause of pancytopenia associated with a neurological syndrome. Hypocupremia may also occur as a consequence of excessive oral zinc consumption as described by Brewer et al and several other groups. Dental fixatives have been described as a potential source of hyperzincemia in patients. Despite the recently modified dental fixatives with safer zinc content, zinc poisoning results in hypocupremia secondary to inappropriate use of them can still happen and more likely be misdiagnosed. We describe a case of a patient with pancytopenia who was diagnosed with severe aplastic anemia and hypocellular myelodysplastic syndrome and was referred to us for consideration of bone marrow transplantation. </p>","PeriodicalId":7657,"journal":{"name":"American journal of stem cells","volume":"2 2","pages":"132-6"},"PeriodicalIF":1.8,"publicationDate":"2013-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3708507/pdf/ajsc0002-0132.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31586621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信