{"title":"Mapping Graph Homology to (K)-Theory of Roe Algebras","authors":"V. Manuilov","doi":"10.1134/S106192084010102","DOIUrl":"10.1134/S106192084010102","url":null,"abstract":"<p> Given a graph <span>(Gamma)</span>, one may consider the set <span>(X)</span> of its vertices as a metric space by assuming that all edges have length one. We consider two versions of homology theory of <span>(Gamma)</span> and their <span>(K)</span>-theory counterparts — the <span>(K)</span>-theory of the (uniform) Roe algebra of the metric space <span>(X)</span> of vertices of <span>(Gamma)</span>. We construct here a natural mapping from homology of <span>(Gamma)</span> to the <span>(K)</span>-theory of the Roe algebra of <span>(X)</span>, and its uniform version. We show that, when <span>(Gamma)</span> is the Cayley graph of <span>(mathbb Z)</span>, the constructed mappings are isomorphisms. </p><p> <b> DOI</b> 10.1134/S106192084010102 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"31 1","pages":"132 - 136"},"PeriodicalIF":1.7,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140171518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Extension of Characters from the Radical of a Connected Lie Group to a One-Dimensional Pure Pseudorepresentation of the Group Revisited","authors":"A.I. Shtern","doi":"10.1134/S106192084010126","DOIUrl":"10.1134/S106192084010126","url":null,"abstract":"<p> Investigations concerning the extension of characters on normal subgroups to one-dimensional pure pseudorepresentations of the enveloping groups are continued. We prove necessary and sufficient conditions that an ordinary unitary character on the radical of a connected Lie group admits an extension to a one-dimensional pure pseudorepresentation of the group and prove the uniqueness of this pure pseudorepresentation if it exists. </p><p> <b> DOI</b> 10.1134/S106192084010126 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"31 1","pages":"146 - 148"},"PeriodicalIF":1.7,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140171665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Asymptotics of Long Nonlinear Coastal Waves in Basins with Gentle Shores","authors":"S.Yu. Dobrokhotov, D.S. Minenkov, M.M. Votiakova","doi":"10.1134/S106192084010060","DOIUrl":"10.1134/S106192084010060","url":null,"abstract":"<p> We construct asymptotic solutions of a special type for the nonlinear system of shallow water equations in two-dimensional basins with gentle shores and depth function <span>(D(x))</span>, where <span>(x=(x_1,x_2))</span>. These solutions represent waves localized near the shorelines (coastal waves) and generalize the (linear) Stokes and Ursell waves. The waves we consider are periodic or close to periodic in time. The corresponding asymptotic solutions are represented in a parametric form based on the modification of the Carrier–Greenspan transformation and are generated by asymptotic eigenfunctions (quasimodes) of the operator <span>(hat{H} = -nablacdot(gD(x)nabla))</span>, where <span>(g)</span> is the gravity acceleration. These eigenfunctions are, in general, related to the trajectories of a Hamiltonian system with the Hamiltonian <span>(H = gD(x)(p_1^2+p_2^2))</span>, which forms billiards with “semi-rigid walls.” In the general case, the existence of such billiards assumes the integrability condition that is practically impossible to be satisfied in real situations. However, we consider a “degenerate” situation where the trajectories are localized in a very narrow vicinity of the boundary <span>(Gamma_0={D(x)=0})</span>, and the asymptotic eigenfunctions resemble the well-known “whispering gallery” wave functions in acoustics. In this case, the requirement of integrability is eliminated (the corresponding billiard is “almost integrable” for the considered set of trajectories). One important difference between the problem we study and the classical whispering gallery situation is that, due to the degeneracy of the depth function <span>(D(x))</span> on the boundary <span>(Gamma_0)</span>, the trajectories are always normal to the boundary, and the requirement of convexity of the domain of the considered problem is absent. </p><p> <b> DOI</b> 10.1134/S106192084010060 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"31 1","pages":"79 - 93"},"PeriodicalIF":1.7,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140171704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bogoyavlensky Lattices and Generalized Catalan Numbers","authors":"V.E. Adler","doi":"10.1134/S106192084010011","DOIUrl":"10.1134/S106192084010011","url":null,"abstract":"<p> We study the problem of the decay of initial data in the form of a unit step for the Bogoyavlensky lattices. In contrast to the Gurevich–Pitaevskii problem of the decay of initial discontinuity for the KdV equation, it turns out to be exactly solvable, since the dynamics is linearizable due to termination on the half-line. The answer is written in terms of generalized hypergeometric functions, which serve as exponential generating functions for generalized Catalan numbers. This can be proved by the fact that the generalized Hankel determinants for these numbers are equal to 1, which is a well-known result in combinatorics. Another method is based on a nonautonomous symmetry reduction consistent with the dynamics. It reduces the lattice equation to a finite-dimensional system and makes it possible to solve the problem for a more general finite-parameter family of initial data. </p><p> <b> DOI</b> 10.1134/S106192084010011 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"31 1","pages":"1 - 23"},"PeriodicalIF":1.7,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140171710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Trace Formulas for a Complex KdV Equation","authors":"E. Korotyaev","doi":"10.1134/S106192084010096","DOIUrl":"10.1134/S106192084010096","url":null,"abstract":"<p> Faddeev and Zakharov determined the trace formulas for the KdV equation with real initial conditions in 1971. We reprove these results for the KdV equation with complex initial conditions. The Lax operator is a Schrödinger operator with complex-valued potentials on the line. The operator has essential spectrum on the half-line plus eigenvalues (counted with algebraic multiplicity) in the complex plane without the positive half-line. We determine series of trace formulas. Here we have a new term: a singular measure, which is absent for real potentials. Moreover, we estimate of sum of the imaginary part of eigenvalues plus the singular measure in terms of the norm of potentials. The proof is based on classical results about the Hardy spaces. </p><p> <b> DOI</b> 10.1134/S106192084010096 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"31 1","pages":"112 - 131"},"PeriodicalIF":1.7,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140171706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On Solutions of the Navier Problem for a Polyharmonic Equation in Unbounded Domains","authors":"H.A. Matevossian","doi":"10.1134/S1061920823040209","DOIUrl":"10.1134/S1061920823040209","url":null,"abstract":"<p> The polyharmonic Navier problem is considered, the uniqueness (non-uniqueness) of its solution is studied in unbounded domains under the assumption that the generalized solution of this problem has a finite Dirichlet integral with weight <span>(|x|^a)</span>. Depending on the values of the parameter <span>(a)</span>, uniqueness theorems are proved and exact formulas are found for calculating the dimension of the space of solutions of the Navier problem for a polyharmonic equation in the exterior of a compact set and in a half-space. </p><p> <b> DOI</b> 10.1134/S1061920823040209 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"30 4","pages":"713 - 716"},"PeriodicalIF":1.7,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139056503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Averaging Method for Quasi-Linear Hyperbolic Systems","authors":"V.B. Levenshtam","doi":"10.1134/S1061920823040118","DOIUrl":"10.1134/S1061920823040118","url":null,"abstract":"<p> The paper considers the Cauchy problem for a multidimensional quasilinear hyperbolic system of differential equations with the data rapidly oscillating in time. This data do not explicitly depend on spatial variables. The method by N. M. Krylov–N. N. Bogolyubov is developed and justified for these systems. Also an algorithm is developed and justified, based on this method and the method of two-scale expansions, for constructing the complete asymptotics of solutions. </p><p> <b> DOI</b> 10.1134/S1061920823040118 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"30 4","pages":"552 - 560"},"PeriodicalIF":1.7,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139056592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Trace of the Resolvent of the Laplace Operator on a Metric Graph","authors":"A. A. Tolchennikov","doi":"10.1134/S1061920823040192","DOIUrl":"10.1134/S1061920823040192","url":null,"abstract":"<p> In the paper, using Krein’s resolvent formula, we find an asymptotics of the resolvent of the trace of the Laplace operator on a metric graph. </p><p> <b> DOI</b> 10.1134/S1061920823040192 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"30 4","pages":"704 - 712"},"PeriodicalIF":1.7,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139056386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Method of Potential Operators for Interaction Problems on Unbounded Hypersurfaces in (mathbb{R}^{n}) for Dirac Operators","authors":"V. S. Rabinovich","doi":"10.1134/S1061920823040167","DOIUrl":"10.1134/S1061920823040167","url":null,"abstract":"<p> We consider the <span>(L_{p})</span>-theory of interaction problems associated with Dirac operators with singular potentials of the form <span>(D=mathfrak{D}_{m,Phi }+Gammadelta_{Sigma})</span> where </p><p> is a Dirac operator on <span>(mathbb{R}^{n})</span>, <span>(alpha_{1},alpha_{2},dots,alpha _{n},alpha_{n+1})</span> are Dirac matrices, <span>(m)</span> is a variable mass, <span>(Phi mathbb{I}_{N})</span> electrostatic potential, <span>(Gammadelta_{Sigma})</span> is a singular potential with support on smooth hypersurfaces <span>(Sigma subsetmathbb{R}^{n}.)</span> </p><p> We associate with the formal Dirac operator <span>(D)</span> the interaction (transmission) problem on <span>(mathbb{R}^{n}diagdownSigma)</span> with the interaction conditions on <span>(Sigma)</span>. Applying the method of potential operators we reduce the interaction problem to a pseudodifferential equation on <span>(Sigma.)</span> The main aim of the paper is the study of Fredholm property of these pseudodifferential operators on unbounded hypersurfaces <span>(Sigma)</span> and applications to the study of Fredholmness of interaction problems on unbounded smooth hypersurfaces in Sobolev and Besov spaces. </p><p> <b> DOI</b> 10.1134/S1061920823040167 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"30 4","pages":"674 - 690"},"PeriodicalIF":1.7,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139056431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On Degenerate Orbits of Real Lie Algebras in Multidimensional Complex Spaces","authors":"A.V. Atanov, A.V. Loboda","doi":"10.1134/S1061920823040027","DOIUrl":"10.1134/S1061920823040027","url":null,"abstract":"<p>The article studies (locally) holomorphically homogeneous real hypersurfaces of complex spaces. Currently, the problem of classifying such hypersurfaces is completely solved only in the spaces <span>(mathbb{C}^{2})</span> and <span>(mathbb{C}^{3})</span>. As the dimension of the ambient space grows, so does the relative part of Levi-degenerate manifolds in the family of all homogeneous hypersurfaces. In particular, this family includes holomorphically degenerate hypersurfaces, which are (locally) direct products of homogeneous hypersurfaces from spaces of smaller dimensions and spaces <span>(mathbb{C}^{k})</span>. The article proves a sufficient Levi-degeneracy condition of all orbits in spaces <span>(mathbb{C}^{n+1})</span> <span>((n ge 3))</span> for <span>((2n+1))</span>-dimensional Lie algebras of holomorphic vector fields having full rank at the points in <span>(mathbb{C}^{n+1})</span>. The proven condition is the existence of an abelian subalgebra of codimension 2 in the Lie algebra under discussion. It is shown that in the case <span>(n = 3)</span>, this condition holds for a large family of 7-dimensional Lie algebras. Holomorphically homogeneous hypersurfaces, i.e. the orbits of these algebras in <span>(mathbb{C}^{4})</span> can only be Levi-degenerate manifolds. We provide an example of a family of 7-dimensional Lie algebras that have 5-dimensional abelian ideals and Levi-degenerate (but not holomorphically degenerate) orbits. </p><p> <b> DOI</b> 10.1134/S1061920823040027 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"30 4","pages":"432 - 442"},"PeriodicalIF":1.7,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139056496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}