概率伯努利和欧拉多项式

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
T. Kim, D. S. Kim
{"title":"概率伯努利和欧拉多项式","authors":"T. Kim,&nbsp;D. S. Kim","doi":"10.1134/S106192084010072","DOIUrl":null,"url":null,"abstract":"<p> Let <span>\\(Y\\)</span> be a random variable whose moment generating function exists in a neighborhood of the origin. The aim of this paper is to introduce and study the probabilistic extension of Bernoulli polynomials and Euler polynomials, namely the probabilistic Bernoulli polynomials associated <span>\\(Y\\)</span> and the probabilistic Euler polynomials associated with <span>\\(Y\\)</span>. Also, we introduce the probabilistic <span>\\(r\\)</span>-Stirling numbers of the second associated <span>\\(Y\\)</span>, the probabilistic two variable Fubini polynomials associated <span>\\(Y\\)</span>, and the probabilistic poly-Bernoulli polynomials associated with <span>\\(Y\\)</span>. We obtain some properties, explicit expressions, certain identities and recurrence relations for those polynomials. As special cases of <span>\\(Y\\)</span>, we treat the gamma random variable with parameters <span>\\(\\alpha,\\beta &gt; 0\\)</span>, the Poisson random variable with parameter <span>\\(\\alpha &gt;0\\)</span>, and the Bernoulli random variable with probability of success <span>\\(p\\)</span>. </p><p> <b> DOI</b> 10.1134/S106192084010072 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"31 1","pages":"94 - 105"},"PeriodicalIF":1.7000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic Bernoulli and Euler Polynomials\",\"authors\":\"T. Kim,&nbsp;D. S. Kim\",\"doi\":\"10.1134/S106192084010072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> Let <span>\\\\(Y\\\\)</span> be a random variable whose moment generating function exists in a neighborhood of the origin. The aim of this paper is to introduce and study the probabilistic extension of Bernoulli polynomials and Euler polynomials, namely the probabilistic Bernoulli polynomials associated <span>\\\\(Y\\\\)</span> and the probabilistic Euler polynomials associated with <span>\\\\(Y\\\\)</span>. Also, we introduce the probabilistic <span>\\\\(r\\\\)</span>-Stirling numbers of the second associated <span>\\\\(Y\\\\)</span>, the probabilistic two variable Fubini polynomials associated <span>\\\\(Y\\\\)</span>, and the probabilistic poly-Bernoulli polynomials associated with <span>\\\\(Y\\\\)</span>. We obtain some properties, explicit expressions, certain identities and recurrence relations for those polynomials. As special cases of <span>\\\\(Y\\\\)</span>, we treat the gamma random variable with parameters <span>\\\\(\\\\alpha,\\\\beta &gt; 0\\\\)</span>, the Poisson random variable with parameter <span>\\\\(\\\\alpha &gt;0\\\\)</span>, and the Bernoulli random variable with probability of success <span>\\\\(p\\\\)</span>. </p><p> <b> DOI</b> 10.1134/S106192084010072 </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":\"31 1\",\"pages\":\"94 - 105\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S106192084010072\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S106192084010072","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要 设 \(Y\) 是一个随机变量,其矩产生函数存在于原点附近。本文旨在介绍和研究伯努利多项式和欧拉多项式的概率扩展,即与\(Y\) 相关的概率伯努利多项式和与\(Y\) 相关的概率欧拉多项式。此外,我们还介绍了与\(Y\)相关的概率二次斯特林数、与\(Y\)相关的概率二变富比尼多项式以及与\(Y\)相关的概率伯努利多项式。我们得到了这些多项式的一些性质、明确的表达式、某些等式和递推关系。作为\(Y\)的特例,我们处理了参数为\(\alpha,\beta >0\)的伽马随机变量、参数为\(\alpha >0\)的泊松随机变量和成功概率为\(p\)的伯努利随机变量。 doi 10.1134/s106192084010072
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic Bernoulli and Euler Polynomials

Let \(Y\) be a random variable whose moment generating function exists in a neighborhood of the origin. The aim of this paper is to introduce and study the probabilistic extension of Bernoulli polynomials and Euler polynomials, namely the probabilistic Bernoulli polynomials associated \(Y\) and the probabilistic Euler polynomials associated with \(Y\). Also, we introduce the probabilistic \(r\)-Stirling numbers of the second associated \(Y\), the probabilistic two variable Fubini polynomials associated \(Y\), and the probabilistic poly-Bernoulli polynomials associated with \(Y\). We obtain some properties, explicit expressions, certain identities and recurrence relations for those polynomials. As special cases of \(Y\), we treat the gamma random variable with parameters \(\alpha,\beta > 0\), the Poisson random variable with parameter \(\alpha >0\), and the Bernoulli random variable with probability of success \(p\).

DOI 10.1134/S106192084010072

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信