Natural Volume Forms on Pseudo-Finslerian Manifolds with \(m\)th Root Metrics

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
A.V. Solov’yov
{"title":"Natural Volume Forms on Pseudo-Finslerian Manifolds with \\(m\\)th Root Metrics","authors":"A.V. Solov’yov","doi":"10.1134/S1061920824020146","DOIUrl":null,"url":null,"abstract":"<p> We define natural volume forms on <span>\\(n\\)</span>-dimensional oriented pseudo-Finslerian manifolds with nondegenerate <span>\\(m\\)</span>-th root metrics. Our definitions of the natural volume forms depend on the parity of the positive integer <span>\\(m&gt;1\\)</span>. The advantage of the stated definitions is their algebraic structure. The natural volume forms are expressed in terms of Cayley hyperdeterminants. In particular, the computation of the natural volume form does not require the difficult integration over the domain within the indicatrix in the tangent space <span>\\(T_x M^n\\)</span> of the pseudo-Finslerian manifold at a point <span>\\(x\\)</span>. </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"31 2","pages":"317 - 324"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920824020146","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We define natural volume forms on \(n\)-dimensional oriented pseudo-Finslerian manifolds with nondegenerate \(m\)-th root metrics. Our definitions of the natural volume forms depend on the parity of the positive integer \(m>1\). The advantage of the stated definitions is their algebraic structure. The natural volume forms are expressed in terms of Cayley hyperdeterminants. In particular, the computation of the natural volume form does not require the difficult integration over the domain within the indicatrix in the tangent space \(T_x M^n\) of the pseudo-Finslerian manifold at a point \(x\).

具有 $$m$$ th 根度量的伪芬斯勒方程上的自然体积形式
Abstract We define natural volume forms on \(n\)dimensional oriented pseudo-Finslerian manifolds with nondegenerate \(m\)-th root metrics.我们对自然体积形式的定义取决于正整数 \(m>1\)的奇偶性。所述定义的优势在于其代数结构。自然体积形式用 Cayley 超决定子表示。特别是,自然体积形式的计算不需要在点\(x\)处的伪芬斯勒流形的切空间\(T_x M^n\)的指示矩阵内的域上进行困难的积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信