Uniform Spectral Asymptotics for a Schrödinger Operator on a Segment with Delta-Interaction

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
D.I. Borisov, D.M. Polyakov
{"title":"Uniform Spectral Asymptotics for a Schrödinger Operator on a Segment with Delta-Interaction","authors":"D.I. Borisov,&nbsp;D.M. Polyakov","doi":"10.1134/S1061920824020018","DOIUrl":null,"url":null,"abstract":"<p> We consider a Schrödinger operator on the segment <span>\\((0,1)\\)</span> subject to the Dirichlet condition and perturb it by a delta-potential concentrated at the point <span>\\(x= \\varepsilon \\)</span>, where <span>\\( \\varepsilon \\)</span> is a small positive parameter. We show that the perturbed operator converges to the unperturbed one in the norm resolvent sense and this also implies the convergence of the spectrum. However, the latter convergence is true only inside each compact set on the complex plane and it does not characterize the behavior of the total ensemble of the eigenvalues under the perturbation. Our main result is the spectral asymptotics for the eigenvalues of the perturbed operator with an estimate for the error term uniform in the small parameter. This asymptotics involves an additional nonstandard term, which allows us to describe a global behavior of the total ensemble of the eigenvalues under the perturbation. </p><p> <b> DOI</b> 10.1134/S1061920824020018 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"31 2","pages":"149 - 161"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920824020018","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a Schrödinger operator on the segment \((0,1)\) subject to the Dirichlet condition and perturb it by a delta-potential concentrated at the point \(x= \varepsilon \), where \( \varepsilon \) is a small positive parameter. We show that the perturbed operator converges to the unperturbed one in the norm resolvent sense and this also implies the convergence of the spectrum. However, the latter convergence is true only inside each compact set on the complex plane and it does not characterize the behavior of the total ensemble of the eigenvalues under the perturbation. Our main result is the spectral asymptotics for the eigenvalues of the perturbed operator with an estimate for the error term uniform in the small parameter. This asymptotics involves an additional nonstandard term, which allows us to describe a global behavior of the total ensemble of the eigenvalues under the perturbation.

DOI 10.1134/S1061920824020018

具有三角交互作用的段上薛定谔算子的均匀谱渐近线
摘要 我们考虑了一个受狄利克特条件约束的线段 \((0,1)\) 上的薛定谔算子,并用一个集中在点\(x= \varepsilon \)的三角势对其进行扰动,其中 \( \varepsilon \)是一个小的正参数。我们证明扰动算子在规范解析意义上收敛于未扰动算子,这也意味着频谱的收敛。然而,后一种收敛只在复平面上的每个紧凑集合内有效,并不能说明扰动下特征值总集合的行为。我们的主要结果是受扰动算子特征值的频谱渐近线,以及小参数中均匀误差项的估计值。该渐近涉及一个额外的非标准项,它允许我们描述扰动下特征值总集合的全局行为。 doi 10.1134/s1061920824020018
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信