{"title":"Generation of pore-space images using improved pyramid Wasserstein generative adversarial networks","authors":"Linqi Zhu , Branko Bijeljic , Martin J. Blunt","doi":"10.1016/j.advwatres.2024.104748","DOIUrl":"10.1016/j.advwatres.2024.104748","url":null,"abstract":"<div><p>High-resolution three-dimensional X-ray microscopy can be used to image the pore space of materials. Machine learning algorithms can generate a statistical ensemble of representative images of arbitrary sizes for rock characterization, modeling, and analysis. However, current methods struggle to capture features at different spatial scales observed in many complex rocks which have a wide range of pore size. We use the Improved Pyramid Wasserstein Generative Adversarial Network (IPWGAN) to automatically reproduce multi-scale features in segmented three-dimensional images of porous materials, enabling the reliable generation of large-scale representations of complex porous media. A Laplacian pyramid generator is introduced, which creates pore-space features across a hierarchy of spatial scales. Feature statistics mixing regularization enhances the discriminator’s ability to distinguish between real and generated images by mixing their feature statistics, thereby indirectly enhancing the generator’s ability to capture and reproduce multi-scale pore-space features, leading to increased diversity and realism in the generated images. The method has been tested on five sandstone and carbonate samples. The generated images, which can be of any size – including cm-scale ten-billion-cell images – demonstrate the power of the approach. These images have two-point correlation functions, porosity, permeability, Euler characteristic, curvature, and specific surface area closer to those of the training datasets than existing machine learning techniques. The generated images accurately capture geometric and flow properties, demonstrating a considerable improvement over previously published studies using generative adversarial networks. For instance, the mean relative error in the calculated absolute permeability between the Berea sandstone images generated by IPWGAN and the corresponding real rock images can be reduced by 79%. The work allows representative models of a wide range of porous media to be generated, offering potential benefits in carbon dioxide sequestration, underground hydrogen storage, and enhanced oil recovery.</p></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"190 ","pages":"Article 104748"},"PeriodicalIF":4.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0309170824001350/pdfft?md5=c7bbf71b0b9bbaee3a3cbcf1e89720f6&pid=1-s2.0-S0309170824001350-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141391814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pore-scale insights into relative permeability in strongly and weakly wet natural fractures: A Lattice Boltzmann Method 2D simulation study","authors":"F.F. Munarin , P. Gouze , F. Nepomuceno Filho","doi":"10.1016/j.advwatres.2024.104740","DOIUrl":"https://doi.org/10.1016/j.advwatres.2024.104740","url":null,"abstract":"<div><p>The simplified view of two-phase flow, such as oil and gas, in a fracture is often assumed to occur in a stratified behavior. However, recent studies and production practices have revealed that two-phase flow in fractures exhibits diverse flow patterns. This paper investigates the control of the fracture aperture, fluids viscosity, and wettability on two-phase flow in a 2D cross section of a 3D Berea fracture. Lattice Boltzmann Method (LBM) simulations are used to model the impact of these properties on relative permeability curves. Notably, in strongly wet fractures, two distinct permeability regimes emerge. High aperture values exhibit behavior resembling parallel planes, while low aperture values lead to a linear decrease in permeability due to fluid interactions between fracture surfaces. Conversely, anomalous behavior of the relative permeability curves is identified in weakly wet fractures within specific aperture ranges. This behavior is associated with the occurrence of specific flow patterns within the fracture. Results also emphasize that changes in viscosity ratio do not affect the presence or the saturation range of the anomalous behavior but do influence its intensity for each fluid. Comparisons with Poiseuille profile equations reveal the limited impact of the fracture roughness. These findings enhance our understanding of the interactions between aperture, viscosity, and wettability and how they control the shape of the relative permeability curves. These curves are pivotal parameters for the continuum scale modeling (reservoir models) in oil and gas application, for instance.</p></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"190 ","pages":"Article 104740"},"PeriodicalIF":4.7,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141322772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stephan K. Matthäi, Cuong Mai Bui, Heraji Hansika, M.S.A. Perera
{"title":"Influence of inertial and centrifugal forces on rate and flow patterns in natural fracture networks","authors":"Stephan K. Matthäi, Cuong Mai Bui, Heraji Hansika, M.S.A. Perera","doi":"10.1016/j.advwatres.2024.104741","DOIUrl":"10.1016/j.advwatres.2024.104741","url":null,"abstract":"<div><p>Fluid production from fractured rock masses readily induces fracture flow velocities of meters per second. Yet, most discrete fracture flow models treat flow as laminar creeping flow or account for inertia effects only by single-fracture constitutive relationships.</p><p>This numeric simulation study investigates water flow patterns and spatial velocity variations in a natural fracture network with mm-wide open fractures, studying the transition from laminar creeping to turbulent flow. After verification with a fracture intersection model, a Reynolds-time-averaged Navier Stokes solver serves to analyse flow regimes and velocity distribution. Our results show that for fracture flow velocities greater than <span><math><mo>∼</mo></math></span>1-cm/s, fluid inertia begins to markedly alter flow patterns and the overall velocity distribution in the network. The pressure-gradient-flow relationship therefore becomes non-linear long before the flow in straight fractures enters the weak inertia regime. This prominence of inertia effects highlights the need to improve fracture network flow models.</p></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"190 ","pages":"Article 104741"},"PeriodicalIF":4.7,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0309170824001283/pdfft?md5=fdc8723202c19b8c6218e37d4c5cbe90&pid=1-s2.0-S0309170824001283-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141401071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A hyperbolic–elliptic PDE model and conservative numerical method for gravity-dominated variably-saturated groundwater flow","authors":"Mohammad Afzal Shadab , Marc Andre Hesse","doi":"10.1016/j.advwatres.2024.104736","DOIUrl":"https://doi.org/10.1016/j.advwatres.2024.104736","url":null,"abstract":"<div><p>Richards equation is often used to represent two-phase fluid flow in an unsaturated porous medium when one phase is much heavier and more viscous than the other. However, it cannot describe the fully saturated flow for some capillary functions without specialized treatment due to degeneracy in the capillary pressure term. Mathematically, gravity-dominated variably saturated flows are interesting because their governing partial differential equation switches from hyperbolic in the unsaturated region to elliptic in the saturated region. Moreover, the presence of wetting fronts introduces strong spatial gradients often leading to numerical instability. In this work, we develop a robust, multidimensional mathematical model and implement a well-known efficient and conservative numerical method for such variably saturated flow in the limit of negligible capillary forces. The elliptic problem in saturated regions is integrated efficiently into our framework by solving a reduced system corresponding only to the saturated cells using fixed head boundary conditions in the unsaturated cells. In summary, this coupled hyperbolic–elliptic PDE framework provides an efficient, physics-based extension of the hyperbolic Richards equation to simulate fully saturated regions. Finally, we provide a suite of easy-to-implement yet challenging benchmark test problems involving saturated flows in one and two dimensions. These simple problems, accompanied by their corresponding analytical solutions, can prove to be pivotal for the code verification, model validation (V&V) and performance comparison of simulators for variably saturated flow. Our numerical solutions show an excellent comparison with the analytical results for the proposed problems. The last test problem on two-dimensional infiltration in a stratified, heterogeneous soil shows the formation and evolution of multiple disconnected saturated regions.</p></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"190 ","pages":"Article 104736"},"PeriodicalIF":4.7,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141322771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shahad Al-Yaqoubi , Ali Al-Maktoumi , Yurii Obnosov , Anvar Kacimov
{"title":"Clogging of toe drain drastically affects phreatic seepage in earth dams","authors":"Shahad Al-Yaqoubi , Ali Al-Maktoumi , Yurii Obnosov , Anvar Kacimov","doi":"10.1016/j.advwatres.2024.104737","DOIUrl":"10.1016/j.advwatres.2024.104737","url":null,"abstract":"<div><p>In aged levees, toe (blanket) drains get clogged with time due to seepage-induced suffusion and translocation of fine soil fractions from the upstream to the downstream part of the embankment. These particles deposit on the top of the drain (usually, Terzhagi's graded gravel) as a cake. Also, high hydraulic gradients in the vicinity of the drain move the fine particles into the body of the coarse filter material such that “internal colmation” takes place. In this paper 2-D seepage to a clogged drain is studied experimentally, analytically and numerically. In a sandbox, we illustrate the difference in the position of a phreatic surface and the seepage flow rate between an equipotential toe drain and a clogged one. In the analytical solution, a potential flow model is used and the Neumann (Kirkham-Brock) boundary condition on the clogged drain surface (horizontal segment) is imposed. A circular triangle is mapped conformally onto a reference half-plane, where Hilbert's boundary value problem for a holomorphic function is solved. For a given size of the levee, clogging causes a significant rise of the phreatic surface, although the seepage flow rate drops. In HYDRUS2-D simulations, a FEM-meshed Richards’ equation for a saturated-unsaturated 2-D flow is used for solving in a composite polygon, which mimics a vertical cross-section of a rectangular levee and a clogged-colmated blanket drain. Numerical results are in rough agreement with the analytical model.</p></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"190 ","pages":"Article 104737"},"PeriodicalIF":4.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141274732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chandramauli Awasthi , Dol Raj Chalise , Hui Wang , Solomon Tassew Erkyihun , Tirusew Asefa , A. Sankarasubramanian
{"title":"Hydroclimatic scenario generation using two-stage stochastic simulation framework","authors":"Chandramauli Awasthi , Dol Raj Chalise , Hui Wang , Solomon Tassew Erkyihun , Tirusew Asefa , A. Sankarasubramanian","doi":"10.1016/j.advwatres.2024.104739","DOIUrl":"https://doi.org/10.1016/j.advwatres.2024.104739","url":null,"abstract":"<div><p>Climate change poses significant challenges for decision-making processes across a range of sectors. From the water resources planning and management perspective, the interest is often in evaluating the performance of a water supply system in a future state considering the potential changes in rainfall and streamflow characteristics. With observed climate change signals, scenario-based projections of rainfall and streamflow simulations are crucial for evaluating the potential impacts of climate change on water resource systems. Given the complexity of the existing approaches, their applications for generating scenario-based projections of streamflow and rainfall are limited. We developed a non-parametric bootstrapping approach, NPScnGen, for future scenario generation of any hydroclimatic variable. The developed approach is flexible and can be used with any physical hydrological or data-driven stochastic model that provides simulations of hydroclimatic variables of interest for the historical climate condition. In NPScnGen, samples of any set of time-series characteristics, such as mean and standard deviation, are generated from a multivariate Gaussian process for the considered scenario, and then bootstrapping is performed to select the closest sample from the historical simulation of that hydroclimatic variable. We have also proposed a modified wavelet-based model, Wavelet-HMM, and used that model to synthetically generate historical climate time-series as a baseline. We present the application of the developed framework consisting of historical climate simulation and future climate projection approaches on rainfall and streamflow datasets for the Tampa Bay region in Florida.</p><p>Plain Language Summary: Water resources managers require a wide range of hypothetical but potential changes in hydroclimatic variables such as streamflow and rainfall to evaluate the sustenance of water supply systems in future. Existing scenario generation approaches are limited by either the complexity of statistical models or dependency on climate models which have their own limitations. In such a scenario, the developed non-parametric scenario generation framework in this study, NPScnGen, can be very useful. The developed framework can be applied with any sophisticated time-series generation model that can generate synthetic hydroclimatic traces for baseline climate condition, and it is also flexible in generating a wide range of potential climate change scenarios. We show the application of the framework on both streamflow and rainfall datasets.</p></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"190 ","pages":"Article 104739"},"PeriodicalIF":4.7,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141328524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fengxia Liu , Hui Qian , Guangcai Wang , Yanyan Gao , Ziwei Shi
{"title":"New insights into the parameterization of the dry surface layer and its hydrogeochemical mechanism: An experimental study","authors":"Fengxia Liu , Hui Qian , Guangcai Wang , Yanyan Gao , Ziwei Shi","doi":"10.1016/j.advwatres.2024.104738","DOIUrl":"https://doi.org/10.1016/j.advwatres.2024.104738","url":null,"abstract":"<div><p>Knowledge of the parameterization of the dry surface layer (DSL) is essential for evaluating near-surface water flow and water balance in arid and semi-arid areas. Existing studies have parameterized DSL thickness and vapor flow as functions of the soil moisture content (SMC) in the surface layer to predict soil evaporation. However, hydrochemical processes related to DSL development have been ignored, including changes in hydrochemistry, the underlying hydrochemical mechanism, and the role of dissolved substances in the DSL development. Herein, we performed a series of soil evaporation experiments for 260 days and explored the factors influencing DSL development (e.g., soil texture, atmospheric temperature, SMC, solutes). Evaporation experiments were performed using silty loess, sandy loess, and fine sand with a 60-cm water table. Results showed that the cumulative evaporation of silty loess, sandy loess, and fine sand over the experimental period were 1,391.52, 460.10, and 185.53 mm, respectively, which determined by the maximum height of liquid flow continuity. The content of total dissolved solids (TDS) and major ions at the surface soil were significantly higher than the values at deep depths of 5‒55 cm, which largely depend on evaporative water loss. Evolutionary trends of chemical facies in sand media along the liquid water migration were from HCO<sub>3</sub>-Ca type to SO<sub>4</sub>·Cl-Na type. This was attributed to mineral dissolution at a depth of 5–55 cm and their transport with liquid water, resulting in the precipitation of salt crystals at the surface soil. Furthermore, a consolidated DSL with a thickness of 3.0–3.5 cm in the sandy loess and a loose DSL with a thickness of 1.5–2.0 cm in fine sand were observed at the end of the experiments. The accumulation of solutes at the surface leads to a reduction in effective porosity and the aggregation of soil particles during continuous drying, which facilitates the consolidation of DSL in sandy loess. This overestimated the DSL thickness, resulting in a difference between the experimental and predicted evaporation rates by Fick's law. Overall, these results highlight the limitations of considering DSL thickness as a function of SMC only, providing new insights into hydrochemical processes and dissolved solutes involving DSL parameterization during continuous soil drying.</p></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"190 ","pages":"Article 104738"},"PeriodicalIF":4.7,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141291269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Parameter resolution of simulated responses to periodic hydraulic tomography signals in aquifers","authors":"Daniel Paradis , René Lefebvre , Aymen Nefzi","doi":"10.1016/j.advwatres.2024.104734","DOIUrl":"https://doi.org/10.1016/j.advwatres.2024.104734","url":null,"abstract":"<div><p>An accurate assessment of the hydraulic properties of aquifers is required to represent groundwater flow and solute transport. This study investigates periodic hydraulic tomography performed between wells to obtain accurate images of hydraulic properties. Tomographic experiments with different period and amplitude of sinusoidal test flow, hydraulic properties and well configurations were simulated with a numerical flow model. An <span>l</span>-curve analysis of the obtained heads and sensitivities identified the optimal parameter resolution and served as a basis for comparing the experiments. The results show that the transient phase of signals with short periods provides the most information about the resolution of the aquifer. The resolution could be further improved if tests with different periods were properly combined in the analysis. The study concludes that periodic tomography provides valuable insight into the spatial resolution of hydraulic conductivity and its vertical anisotropy and specific storage, but the choice of signal characteristics is critical.</p></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"190 ","pages":"Article 104734"},"PeriodicalIF":4.7,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141423566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Behnam V. Damirchi , Pouria Behnoudfar , Luís A.G. Bitencourt Jr. , Osvaldo L. Manzoli , Daniel Dias-da-Costa
{"title":"Transient-pressure modelling in fractured porous media with a new embedded finite element approach","authors":"Behnam V. Damirchi , Pouria Behnoudfar , Luís A.G. Bitencourt Jr. , Osvaldo L. Manzoli , Daniel Dias-da-Costa","doi":"10.1016/j.advwatres.2024.104730","DOIUrl":"https://doi.org/10.1016/j.advwatres.2024.104730","url":null,"abstract":"<div><p>This paper presents a unified, embedded finite element formulation for simulating transient fluid flow in fractured porous media while accounting for transverse and longitudinal directions. The transverse flow arises due to pressure variations on both sides of fractures, as these typically exhibit lower permeability in the perpendicular direction. A simple coupling framework is introduced to connect independent sets of finite element meshes, one for the bulk porous media and the other for natural discontinuities. Importantly, the proposed coupling technique does not introduce additional degrees of freedom, and discontinuities can arbitrarily intersect the background elements of the continuum domain. Additionally, standard quadrature rules for integration can be used without modifications, thus avoiding additional remediation steps found with nodal enrichment strategies. These advantageous features make our method a robust technique capable of modelling transient fluid flow as an integral part of a coupled hydro-mechanical formulation. The performance is assessed using several numerical examples. These encompass various cases of fracture orientation relative to the background elements. The results demonstrate a good agreement with reference solutions. The effects of the coupling parameter, as well as the transverse and longitudinal permeabilities, in the temporal domain, are also investigated. The results demonstrated that the proposed method is capable of handling any values of transverse or longitudinal permeability compared to the surrounding porous domain. Moreover, the findings confirmed that, as a rule of thumb, a coupling parameter should be selected 10 times larger than the highest permeability used in the model.</p></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"190 ","pages":"Article 104730"},"PeriodicalIF":4.7,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0309170824001179/pdfft?md5=243615301a65e1c3f04f1c48c9e2c301&pid=1-s2.0-S0309170824001179-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141251023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A one-dimensional augmented Shallow Water Equations system for channels of arbitrary cross-section","authors":"A. Valiani, V. Caleffi","doi":"10.1016/j.advwatres.2024.104735","DOIUrl":"https://doi.org/10.1016/j.advwatres.2024.104735","url":null,"abstract":"<div><p>This work provides a new formulation of the one-dimensional <em>augmented</em> Shallow Water Equations system for open channels and rivers with arbitrarily shaped cross sections, suitable for numerical integration when discontinuous geometry is encountered. The additional variable considered can be the bottom elevation, a reference width, a shape coefficient, or a vector containing these or other geometric parameters. The appropriate numerical method, which is well suited to coupling with the mathematical one, is a path-conservative method, capable of reconstructing the behaviour of physical and geometrical variables at the cell boundaries, where the discrete solution of hyperbolic systems of equations is discontinuous. A nonlinear path suitable for the shallow water context is adopted. The resulting model is shown to be well-balanced and accurate to the second order and is further validated against analytical solutions related to channels with power-law cross-sections, specifically for dam break patterns over a variable-width channel and the run-up dynamics of long water waves over sloping bays.</p></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"189 ","pages":"Article 104735"},"PeriodicalIF":4.7,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0309170824001222/pdfft?md5=81c602771578d2080bf566afd0027f66&pid=1-s2.0-S0309170824001222-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141241982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}