{"title":"Dynamic mode decomposition of GRACE satellite data","authors":"G. Libero , V. Ciriello , D.M. Tartakovsky","doi":"10.1016/j.advwatres.2024.104834","DOIUrl":"10.1016/j.advwatres.2024.104834","url":null,"abstract":"<div><div>Advancements in satellite technology yield environmental data with ever improving spatial coverage and temporal resolution. This necessitates the development of techniques to discern actionable information from large amounts of such data. We explore the potential of dynamic mode decomposition (DMD) to discover the dynamics of spatially correlated structures present in global-scale data, specifically in observations of total water storage anomalies provided by GRACE satellite missions. Our results demonstrate that DMD enables data compression and extrapolation from a reduced set of dominant spatiotemporal structures. The accuracy of its predictions of global system dynamics is preserved in its reconstruction of local time series. These findings suggest potential uses of DMD in analysis of remote-sensing data for hydrologic applications.</div></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"193 ","pages":"Article 104834"},"PeriodicalIF":4.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Semi-implicit schemes for modeling water flow and solute transport in unsaturated soils","authors":"Hamza Kamil , Abdelaziz Beljadid , Azzeddine Soulaïmani , Yves Bourgault","doi":"10.1016/j.advwatres.2024.104835","DOIUrl":"10.1016/j.advwatres.2024.104835","url":null,"abstract":"<div><div>The coupled model of water flow and solute transport in unsaturated soils is addressed in this study. Building upon previous research findings by Keita, Beljadid, and Bourgault, we investigate a class of second-order time-stepping techniques where two free parameters are introduced, to identify the most stable and accurate scheme. The spatial discretization of the Richards equation is accomplished using the mixed finite element method. The proposed approach involves formulating noniterative schemes using an extrapolation formula and Taylor approximation in time to linearize nonlinear terms. Additionally, a specialized regularization technique is applied to ensure the convergence of the proposed numerical methods. Numerical simulations are conducted to determine the optimal scheme for solving the Richards equation, which is subsequently extended to the transport equation.</div><div>Numerical simulations of water flow reveal the good accuracy of three schemes—SBDF, MSBDF, and Richards-M2 for homogeneous and heterogeneous soils. Notably, the SBDF scheme stands out for its computational efficiency and stability, especially when gravity forces dominate over capillary forces. Through numerical analysis of the coupled semi-implicit schemes, our results affirm the SBDF scheme’s superior robustness, establishing it as the optimal choice among the proposed numerical methods. Therefore, the SBDF scheme is employed to solve the coupled model of water flow and solute transport. We conducted various numerical experiments to solve the coupled model, addressing scenarios including single and multispecies nitrogen transport, pore water electrical conductivity, and nitrate transport. The SBDF scheme’s accuracy was rigorously verified through comparisons with reference solutions and experimental data. This establishes the SBDF scheme as an efficient alternative to traditional implicit methods for modeling water flow and solute transport in unsaturated soils.</div></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"193 ","pages":"Article 104835"},"PeriodicalIF":4.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Li Feng , Shaoxing Mo , Alexander Y. Sun , Dexi Wang , Zhengmao Yang , Yuhan Chen , Haiou Wang , Jichun Wu , Xiaoqing Shi
{"title":"Deep learning-based geological parameterization for history matching CO2 plume migration in complex aquifers","authors":"Li Feng , Shaoxing Mo , Alexander Y. Sun , Dexi Wang , Zhengmao Yang , Yuhan Chen , Haiou Wang , Jichun Wu , Xiaoqing Shi","doi":"10.1016/j.advwatres.2024.104833","DOIUrl":"10.1016/j.advwatres.2024.104833","url":null,"abstract":"<div><div>History matching is crucial for reliable numerical simulation of geological carbon storage (GCS) in deep subsurface aquifers. This study focuses on inferring highly complex aquifer permeability fields with multi- and intra-facies heterogeneity to improve the characterization of CO<sub>2</sub> plume migration. We propose a deep learning (DL)-based parameterization strategy combined with the ensemble smoother with multiple data assimilation (ESMDA) algorithm to formulate an integrated inverse framework. The DL model is employed to parameterize non-Gaussian permeability fields using low-dimensional latent variables in a Gaussian distribution, thereby mitigating the non-Gaussianity issue faced by the ensemble-based ESMDA inverse method and simultaneously alleviating the computational burden of high-dimensional inversion. The efficacy of the integrated DL-ESMDA inverse framework is demonstrated using a 3-D GCS model, where it estimates the non-Gaussian permeability field characterized by multi- and intra-facies heterogeneity. Results show that the DL model is able to represent the highly complex and high-dimensional permeability fields using low-dimensional latent vectors. The DL-ESMDA framework sequentially updates these low-dimensional latent vectors instead of the original high-dimensional permeability field to obtain posterior estimations of the permeability field. The resulting CO<sub>2</sub> plume migration closely matches historical measurements, suggesting a significantly improved model reliability after history matching. Additionally, a substantial reduction in uncertainty for future plume migration predictions beyond the history matching period is observed. The proposed framework provides an effective approach for reliable characterization of CO<sub>2</sub> plume migration in highly heterogeneous aquifers, enhancing GCS project operation and risk analysis.</div></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"193 ","pages":"Article 104833"},"PeriodicalIF":4.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael Tritthart , Davide Vanzo , Victor Chavarrías , Annunziato Siviglia , Kees Sloff , Erik Mosselman
{"title":"Why do published models for fluvial and estuarine morphodynamics use unrealistic representations of the effects of transverse bed slopes?","authors":"Michael Tritthart , Davide Vanzo , Victor Chavarrías , Annunziato Siviglia , Kees Sloff , Erik Mosselman","doi":"10.1016/j.advwatres.2024.104831","DOIUrl":"10.1016/j.advwatres.2024.104831","url":null,"abstract":"<div><div>The sediment transport direction is affected by the bed slope. This effect is of crucial importance for two- and three-dimensional modelling of the interaction between the flow of water and the alluvial bed. It is not uncommon to find applications of numerical morphodynamic models in the literature that exaggerate the effects of transverse bed slopes on sediment transport compared to results from laboratory experiments. We investigate mathematically the consequences of such an approach, and we analyse through numerical simulations different explanations for the need to apply deviating values. The study reveals that the reason often lies in the setup of the numerical models, such as the choice of mesh resolution or the necessity to comply with specific aspects of the numerical scheme. The missing or inadequate implementation of physical processes in the model is another cause. All of these effects can be compensated by artificial diffusion added through the bed slope effect coefficients. Since increased diffusion strongly alters the physical processes of self-formed bed morphology, we recommend that modellers address the root causes of inflated erosion and deposition. Bed slope effect coefficients should be applied within the range found in the original publications.</div></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"193 ","pages":"Article 104831"},"PeriodicalIF":4.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinbao Guo , Yixin Zhao , Linfeng He , Xiaodong Guo , Hua Shen , Sen Gao
{"title":"Spontaneous imbibition of unsaturated sandstone under different vertical temperature gradients: neutron radiography experiments and dynamic models","authors":"Jinbao Guo , Yixin Zhao , Linfeng He , Xiaodong Guo , Hua Shen , Sen Gao","doi":"10.1016/j.advwatres.2024.104832","DOIUrl":"10.1016/j.advwatres.2024.104832","url":null,"abstract":"<div><div>To elucidate the imbibition behavior of water in complex temperature and stress environments, spontaneous imbibition experiments were conducted on unsaturated matrix sandstones at different vertical temperature gradients by neutron radiography technology. Additionally, corresponding dynamic models of water imbibition in porous media were established. The research results reveal the phased characteristics of sandstone spontaneous imbibition and the influence of vertical temperature gradient on the evolution of wetting front. Specifically, the initial development speed of the wetting front increases with an increase in the vertical temperature gradient, indicating a direct relationship. However, the growth rate of the wetting front gradually slows down with increasing time, eventually reaching a saturated state. Model validation demonstrates that the traditional Washburn's law is still valid in isothermal conditions without temperature gradient (G=0). Further analysis indicates that the imbibition rate has a direct correlation with linear thermal expansion coefficient (α) and viscosity temperature coefficient (β) across various vertical temperature gradients, and an inverse correlation with surface tension temperature coefficient (γ). Furthermore, when the values of α, β, and γ fall below 0.001, their impact on the imbibition rate becomes negligible. The sensitivity of the imbibition rate to parameters γ, β, and α decreases in that order, with γ being the most sensitive, followed by β, and α being the least sensitive. Moreover, the relative importance of α, β, and γ dictates their specific influence on the imbibition rate, and a synergistic effect exists among these parameters, which collectively influence the water absorption behavior of sandstone.</div></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"193 ","pages":"Article 104832"},"PeriodicalIF":4.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Upscaling transport in heterogeneous media featuring local-scale dispersion: Flow channeling, macro-retardation and parameter prediction","authors":"Lian Zhou, Scott K. Hansen","doi":"10.1016/j.advwatres.2024.104830","DOIUrl":"10.1016/j.advwatres.2024.104830","url":null,"abstract":"<div><div>Many theoretical treatments of transport in heterogeneous Darcy flows consider advection only. When local-scale dispersion is neglected, flux weighting persists over time; mean Lagrangian and Eulerian flow velocity distributions relate simply to each other and to the variance of the underlying hydraulic conductivity field. Local-scale dispersion complicates this relationship, potentially causing initially flux-weighted solute to experience lower-velocity regions as well as Taylor-type macrodispersion due to transverse solute movement between adjacent streamlines. To investigate the interplay of local-scale dispersion with conductivity log-variance, correlation length, and anisotropy, we perform a Monte Carlo study of flow and advective-dispersive transport in spatially-periodic 2D Darcy flows in large-scale, high-resolution multivariate Gaussian random conductivity fields. We observe flow channeling at all heterogeneity levels and quantify its extent. We find evidence for substantial effective retardation in the upscaled system, associated with increased flow channeling, and observe limited Taylor-type macrodispersion, which we physically explain. A quasi-constant Lagrangian velocity is achieved within a short distance of release, allowing usage of a simplified continuous-time random walk (CTRW) model we previously proposed in which the transition time distribution is understood as a temporal mapping of unit time in an equivalent system with no flow heterogeneity. The numerical data set is modeled with such a CTRW; we show how dimensionless parameters defining the CTRW transition time distribution are predicted by dimensionless heterogeneity statistics and provide empirical equations for this purpose.</div></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"193 ","pages":"Article 104830"},"PeriodicalIF":4.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mamta Jotkar , Ilan Ben-Noah , Juan J. Hidalgo , Marco Dentz
{"title":"Diffusiophoresis of colloids in partially-saturated porous media","authors":"Mamta Jotkar , Ilan Ben-Noah , Juan J. Hidalgo , Marco Dentz","doi":"10.1016/j.advwatres.2024.104828","DOIUrl":"10.1016/j.advwatres.2024.104828","url":null,"abstract":"<div><div>It is known that structural heterogeneity induced by the distribution of the water and air phases creates complex flow patterns with a broad distribution of flow velocities, which in turn control key aspects of transport including arrival and residence times, dispersion and spatial distributions of dissolved salts and suspended colloidal particles. Stagnation zones serve as hot spots where colloidal particles can get entrapped, providing a challenging task in controlling their transport. Recent investigations in simple confined geometries suggest diffusiophoresis, the colloid migration driven by local salt gradients, to be an efficient mechanism to control colloidal migration. However, despite its potential, diffusiophoresis in complex porous media remains poorly understood. We use detailed numerical simulations to unravel the effects of diffusiophoresis occurring at pore-scale on the macroscopic dispersion of colloids in partially-saturated porous media with different water-saturation degrees. Diffusiophoresis can promote particle retention or removal, depending on the diffusiophoretic mobility. For fully-saturated media, the pore-scale dynamics due to diffusiophoresis are manifested in the long-time tailing of the breakthrough curves. For partially-saturated media as the degree of water-saturation decreases and flow heterogeneity increases, we observe accumulation and depletion effects in the colloid breakthrough curves which can be traced back to trapping and release in dead-end zones. Finally, our results suggest that colloid mobilisation and retention due to diffusiophoresis can be controlled by the flow rate of the injected salt solution.</div></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"193 ","pages":"Article 104828"},"PeriodicalIF":4.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142419711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A generalized kinetic theory of Ostwald ripening in porous media","authors":"Nicolas Bueno, Luis Ayala, Yashar Mehmani","doi":"10.1016/j.advwatres.2024.104826","DOIUrl":"10.1016/j.advwatres.2024.104826","url":null,"abstract":"<div><div>Partially miscible bubbles (e.g., CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>) trapped inside a porous medium and surrounded by a wetting phase (e.g., water) occur in a number of applications including underground hydrogen storage, geologic carbon sequestration, and the operation of electrochemcial devices such as fuel cells and electrolyzers. Such bubbles evolve due to a process called Ostwald ripening that is driven by differences in their interfacial curvature. For spherical bubbles, small bubbles shrink and vanish while feeding into larger ones, resulting in one large bubble at equilibrium. Within the confinement of a porous medium, however, bubbles can attain a distribution of sizes at equilibrium that have identical curvature. This work concerns itself with the formulation of a kinetic theory that predicts the statistical evolution of bubble <em>states</em>, defined as the sizes of the pores within which bubbles are trapped and the extent to which those pores are saturated with bubbles. The theory consists of a population balance equation and appropriate closure approximations. Systematic comparisons against a previously published pore network model (PNM) are conducted to validate the theory. Our theory generalizes existing variants in the literature limited to spherical bubbles trapped in homogeneous media to non-spherical (deformed) bubbles inside microstructures with arbitrary heterogeneity and spatial correlation in pore/throat sizes. We discuss the applicability, limitations, and implications of the theory towards future extensions.</div></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"193 ","pages":"Article 104826"},"PeriodicalIF":4.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Subhojit Kadia , I.A. Sofia Larsson , Mats Billstein , Nils Rüther , Leif Lia , Elena Pummer
{"title":"Investigating supercritical flow characteristics and movement of sediment particles in a narrow channel bend using PTV and video footage","authors":"Subhojit Kadia , I.A. Sofia Larsson , Mats Billstein , Nils Rüther , Leif Lia , Elena Pummer","doi":"10.1016/j.advwatres.2024.104827","DOIUrl":"10.1016/j.advwatres.2024.104827","url":null,"abstract":"<div><div>This experimental study investigates the cause of nonuniform invert abrasion observed at sediment bypass tunnel (SBT) bends by examining the variations in velocity distributions, turbulence properties, bed shear stress, and bulk sediment movements under three supercritical bend flow conditions, detailed investigation of such flow is scarce. Using a laboratory-scaled model (1:22) of the downstream bend at Solis SBT, Switzerland, the research utilized particle tracking velocimetry and high-speed cameras with spherical sandstones and glass spheres representing sediments. The results indicate that as the secondary currents develop in the flow direction, the flow properties and sediments redistribute across the channel: the high-momentum fluids are directed toward the outer wall, the bed shear stress increases toward the outer wall, and the sediments are pushed toward the inner wall, which then follow this path downstream, even in straight sections, despite lower bed shear stress. This distribution of sediments, driven by secondary currents, leads to deeper invert abrasions toward the inner wall at SBT bends and downstream sections. Thus, these abrasions are primarily influenced by sediment movement rather than the bed shear stress alone. The study's findings are also valuable for validating future numerical simulations.</div></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"193 ","pages":"Article 104827"},"PeriodicalIF":4.0,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142419709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamics of bedload transport under run-up wave by gravel resolved scheme based on 3D DEM-MPS coupling","authors":"Takumi Tazaki, Eiji Harada, Hitoshi Gotoh","doi":"10.1016/j.advwatres.2024.104824","DOIUrl":"10.1016/j.advwatres.2024.104824","url":null,"abstract":"<div><div>Accurate predictions of morphological changes in swash zones require a detailed understanding of sediment transport mechanisms, which are strongly related to bore-induced vortices and turbulence, surface-subsurface interactions, namely, infiltrate/exfiltrate flow, and swash-swash interactions. However, obtaining experimental or field measurements of instantaneous velocity and sediment flux is challenging owing to the suspended sediment, turbulence, and shallow depth characteristics of these regions. The present study simulates the gravel bedload transport under a dam-break bore at a grain-resolved spatial scale. The simulation uses a 3D Lagrangian–Lagrangian solid–fluid coupled model comprising the moving particle semi-implicit (MPS) method for a violent swash flow and the discrete element method (DEM) for gravels. The simulated water depth, velocity, and sediment flux agree with existing experimental results during a run-up. The gravel transport mechanisms for the lower, mid, and upper swash zones were discussed. Discussions on bedload mechanisms reveal that bore-generated horizontal vortices can reduce the onshore velocity near the beach surface, reducing sediment flux in the lower swash zone. Modified Shields numbers investigate the seepage effects: the frequently used standard Shields number value is insufficient to estimate bedload flux under the intense infiltration in the mid-swash zone. The simulation result also elucidates the turbulence characteristics in the upper swash zone.</div></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"193 ","pages":"Article 104824"},"PeriodicalIF":4.0,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}