Wearable technologies最新文献

筛选
英文 中文
Multi-degrees-of-freedom soft robotic ankle-foot orthosis for gait assistance and variable ankle support. 用于步态辅助和可变踝关节支撑的多自由度软机器人踝足矫形器。
IF 3.4
Wearable technologies Pub Date : 2022-01-01 Epub Date: 2022-08-01 DOI: 10.1017/wtc.2022.14
Carly M Thalman, Tiffany Hertzell, Marielle Debeurre, Hyunglae Lee
{"title":"Multi-degrees-of-freedom soft robotic ankle-foot orthosis for gait assistance and variable ankle support.","authors":"Carly M Thalman, Tiffany Hertzell, Marielle Debeurre, Hyunglae Lee","doi":"10.1017/wtc.2022.14","DOIUrl":"10.1017/wtc.2022.14","url":null,"abstract":"<p><p>This paper presents the design, modeling, analysis, fabrication, and experimental characterization of the Soft Robotic Ankle-Foot Orthosis (SR-AFO), which is a wearable soft robot designed for ankle assistance, and a pilot human study of its use. Using two novel pneumatically-powered soft actuators, the SR-AFO is designed to assist the ankle in multiple degrees-of-freedom during standing and walking tasks. The flat fabric pneumatic artificial muscle (ff-PAM) contracts upon pressurization and assists ankle plantarflexion in the sagittal plane. The Multi-material Actuator for Variable Stiffness (MAVS) aids in supporting ankle inversion/eversion in the frontal plane. Analytical models of the ff-PAM and MAVS were created to understand how the changing of the design parameters affects tensile force generation and stiffness support, respectively. The models were validated by both finite element analysis and experimental characterization using a universal testing machine. A set of human experiments was performed with able-bodied participants to evaluate: 1) lateral ankle support during quiet standing, 2) lateral ankle support during walking over compliant surfaces, and 3) plantarflexion assistance during push-off in treadmill walking. Group results revealed increased lateral ankle stiffness during quiet standing with the MAVS active, reduced lateral ankle deflection while walking over compliant surfaces with the MAVS active, and reduced muscle effort in ankle platarflexors during 40-60% of the gait cycle with the dual ff-PAM active. The SR-AFO shows promising results in providing lateral ankle support and plantarflexion assistance with able-bodied participants, which suggests a potential to help restore the gait of impaired users in future trials.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":"3 ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9886237/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10599913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance of the CYBERLEGs motorized lower limb prosthetic device during simulated daily activities. CYBERLEGs电动下肢假肢装置在模拟日常活动中的表现
Wearable technologies Pub Date : 2021-11-22 eCollection Date: 2021-01-01 DOI: 10.1017/wtc.2021.15
Jo Ghillebert, Joost Geeroms, Louis Flynn, Sander De Bock, Renée Govaerts, Elke Lathouwers, Simona Crea, Nicola Vitiello, Dirk Lefeber, Romain Meeusen, Kevin De Pauw
{"title":"Performance of the CYBERLEGs motorized lower limb prosthetic device during simulated daily activities.","authors":"Jo Ghillebert, Joost Geeroms, Louis Flynn, Sander De Bock, Renée Govaerts, Elke Lathouwers, Simona Crea, Nicola Vitiello, Dirk Lefeber, Romain Meeusen, Kevin De Pauw","doi":"10.1017/wtc.2021.15","DOIUrl":"10.1017/wtc.2021.15","url":null,"abstract":"<p><strong>Background: </strong>The CYBERLEGs-gamma (CLs-ɣ) prosthesis has been developed to investigate the possibilities of powerful active prosthetics in restoring human gait capabilities after lower limb amputation.</p><p><strong>Objective: </strong>The objective of this study was to determine the performance of the CLs-ɣ prosthesis during simulated daily activities.</p><p><strong>Methods: </strong>Eight participants with a transfemoral amputation (age: 55 ± 15 years, <i>K</i>-level 3, registered under: NCT03376919) performed a familiarization session, an experimental session with their current prosthesis, three training sessions with the CLs-ɣ prosthesis and another experimental session with the CLs-ɣ prosthesis. Participants completed a stair-climbing-test, a timed-up-and-go-test, a sit-to stand-test, a 2-min dual-task and a 6-min treadmill walk test.</p><p><strong>Results: </strong>Comparisons between the two experimental sessions showed that stride length significantly increased during walking with the CLs-ɣ prosthesis (<i>p</i> = .012) due to a greater step length of the amputated leg (<i>p</i> = .035). Although a training period with the prototype was included, preferred walking speed was significantly slower (<i>p</i> = .018), the metabolic cost of transport was significantly higher (<i>p</i> = .028) and reaction times significantly worsened (<i>p</i> = .012) when walking with the CLs-ɣ compared to the current prosthesis.</p><p><strong>Conclusions: </strong>It can be stated that a higher physical and cognitive effort were required when wearing the CLs-ɣ prosthesis. Positive outcomes were observed regarding stride length and stair ambulation. Future prosthetics development should minimize the weight of the device and integrate customized control systems. A recommendation for future research is to include several shorter training periods or a prolonged adaptation period.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":"2 1","pages":"e15"},"PeriodicalIF":0.0,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936386/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41455429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of an acceleration-based assistive strategy to control a back-support exoskeleton for manual material handling. 基于加速的辅助策略的评估,以控制背部支撑外骨骼的手动材料处理
IF 3.4
Wearable technologies Pub Date : 2021-01-11 eCollection Date: 2020-01-01 DOI: 10.1017/wtc.2020.8
Maria Lazzaroni, Ali Tabasi, Stefano Toxiri, Darwin G Caldwell, Elena De Momi, Wietse van Dijk, Michiel P de Looze, Idsart Kingma, Jaap H van Dieën, Jesús Ortiz
{"title":"Evaluation of an acceleration-based assistive strategy to control a back-support exoskeleton for manual material handling.","authors":"Maria Lazzaroni, Ali Tabasi, Stefano Toxiri, Darwin G Caldwell, Elena De Momi, Wietse van Dijk, Michiel P de Looze, Idsart Kingma, Jaap H van Dieën, Jesús Ortiz","doi":"10.1017/wtc.2020.8","DOIUrl":"10.1017/wtc.2020.8","url":null,"abstract":"<p><p>To reduce the incidence of occupational musculoskeletal disorders, back-support exoskeletons are being introduced to assist manual material handling activities. Using a device of this type, this study investigates the effects of a new control strategy that uses the angular acceleration of the user's trunk to assist during lifting tasks. To validate this new strategy, its effectiveness was experimentally evaluated relative to the condition without the exoskeleton as well as against existing strategies for comparison. Using the exoskeleton during lifting tasks reduced the peak compression force on the L5S1 disc by up to 16%, with all the control strategies. Substantial differences between the control strategies in the reductions of compression force, lumbar moment and back muscle activation were not observed. However, the new control strategy reduced the movement speed less with respect to the existing strategies. Thanks to improved timing in the assistance in relation to the typical dynamics of the target task, the hindrance to typical movements appeared reduced, thereby promoting intuitiveness and comfort.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":"1 1","pages":"e9"},"PeriodicalIF":3.4,"publicationDate":"2021-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265403/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43108046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct continuous electromyographic control of a powered prosthetic ankle for improved postural control after guided physical training: A case study. 直接连续肌电图控制的动力假肢踝关节改善姿势控制后的指导体育训练:一个案例研究。
Wearable technologies Pub Date : 2021-01-01 Epub Date: 2021-04-12 DOI: 10.1017/wtc.2021.2
Aaron Fleming, Stephanie Huang, Elizabeth Buxton, Frank Hodges, He Helen Huang
{"title":"Direct continuous electromyographic control of a powered prosthetic ankle for improved postural control after guided physical training: A case study.","authors":"Aaron Fleming,&nbsp;Stephanie Huang,&nbsp;Elizabeth Buxton,&nbsp;Frank Hodges,&nbsp;He Helen Huang","doi":"10.1017/wtc.2021.2","DOIUrl":"https://doi.org/10.1017/wtc.2021.2","url":null,"abstract":"<p><p>Despite the promise of powered lower limb prostheses, existing controllers do not assist many daily activities that require continuous control of prosthetic joints according to human states and environments. The objective of this case study was to investigate the feasibility of direct, continuous electromyographic (dEMG) control of a powered ankle prosthesis, combined with physical therapist-guided training, for improved standing postural control in an individual with transtibial amputation. Specifically, EMG signals of the residual antagonistic muscles (i.e. <i>lateral gastrocnemius</i> and <i>tibialis anterior)</i> were used to proportionally drive pneumatical artificial muscles to move a prosthetic ankle. Clinical-based activities were used in the training and evaluation protocol of the control paradigm. We quantified the EMG signals in the bilateral shank muscles as well as measures of postural control and stability. Compared to the participant's daily passive prosthesis, the dEMG-controlled ankle, combined with the training, yielded improved clinical balance scores and reduced compensation from intact joints. Cross-correlation coefficient of bilateral center of pressure excursions, a metric for quantifying standing postural control, increased to .83(±.07) when using dEMG ankle control (<i>passive device:</i> .39(±.29)). We observed synchronized activation of homologous muscles, rapid improvement in performance on the first day of the training for load transfer tasks, and further improvement in performance across training days <i>(p</i> = <i>.006).</i> This case study showed the feasibility of this dEMG control paradigm of a powered prosthetic ankle to assist postural control. This study lays the foundation for future study to extend these results through the inclusion of more participants and activities.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":"2 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/wtc.2021.2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39425926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Real-time gait metric estimation for everyday gait training with wearable devices in people poststroke. 脑卒中后可穿戴设备日常步态训练的实时步态度量估计。
Wearable technologies Pub Date : 2021-01-01 Epub Date: 2021-03-25 DOI: 10.1017/wtc.2020.11
Philipp Arens, Christopher Siviy, Jaehyun Bae, Dabin K Choe, Nikos Karavas, Teresa Baker, Terry D Ellis, Louis N Awad, Conor J Walsh
{"title":"Real-time gait metric estimation for everyday gait training with wearable devices in people poststroke.","authors":"Philipp Arens,&nbsp;Christopher Siviy,&nbsp;Jaehyun Bae,&nbsp;Dabin K Choe,&nbsp;Nikos Karavas,&nbsp;Teresa Baker,&nbsp;Terry D Ellis,&nbsp;Louis N Awad,&nbsp;Conor J Walsh","doi":"10.1017/wtc.2020.11","DOIUrl":"https://doi.org/10.1017/wtc.2020.11","url":null,"abstract":"<p><p>Hemiparetic walking after stroke is typically slow, asymmetric, and inefficient, significantly impacting activities of daily living. Extensive research shows that functional, intensive, and task-specific gait training is instrumental for effective gait rehabilitation, characteristics that our group aims to encourage with soft robotic exosuits. However, standard clinical assessments may lack the precision and frequency to detect subtle changes in intervention efficacy during both conventional and exosuit-assisted gait training, potentially impeding targeted therapy regimes. In this paper, we use exosuit-integrated inertial sensors to reconstruct three clinically meaningful gait metrics related to circumduction, foot clearance, and stride length. Our method corrects sensor drift using instantaneous information from both sides of the body. This approach makes our method robust to irregular walking conditions poststroke as well as usable in real-time applications, such as real-time movement monitoring, exosuit assistance control, and biofeedback. We validate our algorithm in eight people poststroke in comparison to lab-based optical motion capture. Mean errors were below 0.2 cm (9.9%) for circumduction, -0.6 cm (-3.5%) for foot clearance, and 3.8 cm (3.6%) for stride length. A single-participant case study shows our technique's promise in daily-living environments by detecting exosuit-induced changes in gait while walking in a busy outdoor plaza.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":"2 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/wtc.2020.11","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39316250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
A review of soft wearable robots that provide active assistance: Trends, common actuation methods, fabrication, and applications. 提供主动辅助的软性可穿戴机器人综述:趋势、常用驱动方法、制造和应用
IF 3.4
Wearable technologies Pub Date : 2020-09-14 eCollection Date: 2020-01-01 DOI: 10.1017/wtc.2020.4
Carly Thalman, Panagiotis Artemiadis
{"title":"A review of soft wearable robots that provide active assistance: Trends, common actuation methods, fabrication, and applications.","authors":"Carly Thalman, Panagiotis Artemiadis","doi":"10.1017/wtc.2020.4","DOIUrl":"10.1017/wtc.2020.4","url":null,"abstract":"<p><p>This review meta-analysis combines and compares the findings of previously published works in the field of soft wearable robots (SWRs) that provide active methods of actuation for assistive and augmentative purposes. A thorough investigation of major contributions in the field of an SWR is made to analyze trends in the field focused on fluidic and cable-driven systems, prevalent and successful approaches, and identify the future direction of SWRs and active actuation strategies. Types of soft actuators used in wearables are outlined, as well as general practices for fabrication methods of soft actuators and considerations for human-robot interface designs of garment-like exosuits. An overview of well-known and emerging upper body (UB)- and lower body (LB)-assistive technologies is categorized by the specific joints and degree of freedom (DoF) assisted and which actuator methodology is provided. Different use cases for SWRs are addressed, as well as implementation strategies and design applications.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":"1 1","pages":"e3"},"PeriodicalIF":3.4,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265391/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41601451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wearable Neuromodulators 可穿戴神经调节剂
Wearable technologies Pub Date : 2018-10-03 DOI: 10.5772/intechopen.76673
A. Shiraz, B. Leaker, A. Demosthenous
{"title":"Wearable Neuromodulators","authors":"A. Shiraz, B. Leaker, A. Demosthenous","doi":"10.5772/intechopen.76673","DOIUrl":"https://doi.org/10.5772/intechopen.76673","url":null,"abstract":"In neuromodulation, by delivering a form of stimulus to neural tissue the response of an associated neural circuit may be changed, enhanced or inhibited (i.e., modulated) as desired. This powerful technique may be used to treat various medical conditions as outlined in this chapter. After a brief introduction to the human nervous system, key example applications of electrical neuromodulation such as cardiac pacemakers, devices for pain relief, deep brain stimulation, cochlear implant and visual prosthesis and their respective methods of deployment are discussed. Furthermore, key features of wearable neuromodulators with reference to some existing devices are briefly reviewed. This chapter is concluded by a case study on design and development of a wearable device with non-invasive electrodes for treating lower urinary tract dysfunctions after spinal cord injury.","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5772/intechopen.76673","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44393474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Middleware-Driven Intelligent Glove for Industrial Applications 工业应用中间件驱动智能手套
Wearable technologies Pub Date : 2018-10-03 DOI: 10.5772/INTECHOPEN.76382
F. Aliyu, Basem Almadani
{"title":"Middleware-Driven Intelligent Glove for Industrial Applications","authors":"F. Aliyu, Basem Almadani","doi":"10.5772/INTECHOPEN.76382","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.76382","url":null,"abstract":"It is estimated that by the year 2020, 700 million wearable technology devices will be sold worldwide. One of the reasons is the industries’ need to increase their productivity. Some of the tools welcomed by industries are handheld devices such as tablets, PDAs and mobile phones. However, handheld devices are not ideal for industrial applications because they often subject users to fatigue during their long working hours. A viable solution to this problem is wearable devices. The advantage of wearable devices is that they become part of the user. Hence, they subject the user to less fatigue, thereby increas- ing their productivity. This chapter presents the development of an intelligent glove, which is designed to control actuators in an industrial environment. This system utilizes RTI connext data distributed service middleware to facilitate communication over WiFi. Our experiments show very promising results with maximum power consumption of 310 mW and latency as low as 23 ms. These results make the proposed system a perfect fit for most industrial applications.","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5772/INTECHOPEN.76382","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41812401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wearable Technology as a Tool to Motivate Health Behaviour: A Case Study 可穿戴技术作为激励健康行为的工具:一个案例研究
Wearable technologies Pub Date : 2018-10-03 DOI: 10.5772/INTECHOPEN.77002
V. Ferraro, Mila Stepanovic, S. Ferraris
{"title":"Wearable Technology as a Tool to Motivate Health Behaviour: A Case Study","authors":"V. Ferraro, Mila Stepanovic, S. Ferraris","doi":"10.5772/INTECHOPEN.77002","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.77002","url":null,"abstract":"According to the Scientific Committee on Occupational Exposure Limits, work-related exposures are estimated to account for about 15% of all adult respiratory diseases. Today, the use of personal protective equipment (PPE) is the only way for workers to prevent disease. Nevertheless, its use is highly sparse. Currently, products and systems embedded with wearable technologies are able to protect, motivate and educate users. The authors then suggested the development of a novel wearable system following the beliefs that wearable technology can be persuasive and elicit a conscious behaviour towards the use of the PPEs by consequently improving their health condition. The authors here describe the result of a Transnational Research Project named “ P_O_D Plurisensorial Device to prevent Occupational Disease. ” The chapter describes the findings achieved so far, the research phase and the new wearable system conceived as a possible example of how to use wearable technology as a useful tool to influence behavioural change.","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5772/INTECHOPEN.77002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44384300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Conductive Yarn Embroidered Circuits for System on Textiles 用于纺织品系统的导电纱线刺绣电路
Wearable technologies Pub Date : 2018-10-03 DOI: 10.5772/INTECHOPEN.76627
Jung-Sim Roh
{"title":"Conductive Yarn Embroidered Circuits for System on Textiles","authors":"Jung-Sim Roh","doi":"10.5772/INTECHOPEN.76627","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.76627","url":null,"abstract":"With the recent convergence of electronics and textile technology, various kinds of smart wearables are being developed, such as heating clothes, health monitoring clothes, and motion sensing clothes. In this study, the novel conductive embroidery yarns for touch sensing and signal transmission for system on textile (SoT) are introduced. The conductive yarn for touch sensing can be used as a user interface of smart clothes by constructing an embroidery circuit. The conductive yarn for signal transmission can be embroidered on smart clothing and used as a transmission line to transmit power and signal. The conductive yarns and their embroidered circuits were characterized and SoT prototypes using the embroidered circuit of these conductive yarns were presented. These e-textiles based on touch sensing and signal transmission can be comfortably applied for SoT and maintain electrical performance without being damaged by tensile force generated by the movement of the wearer.","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5772/INTECHOPEN.76627","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49460432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信