Wearable technologies最新文献

筛选
英文 中文
A review of soft wearable robots that provide active assistance: Trends, common actuation methods, fabrication, and applications. 提供主动辅助的软性可穿戴机器人综述:趋势、常用驱动方法、制造和应用
IF 3.4
Wearable technologies Pub Date : 2020-09-14 eCollection Date: 2020-01-01 DOI: 10.1017/wtc.2020.4
Carly Thalman, Panagiotis Artemiadis
{"title":"A review of soft wearable robots that provide active assistance: Trends, common actuation methods, fabrication, and applications.","authors":"Carly Thalman, Panagiotis Artemiadis","doi":"10.1017/wtc.2020.4","DOIUrl":"10.1017/wtc.2020.4","url":null,"abstract":"<p><p>This review meta-analysis combines and compares the findings of previously published works in the field of soft wearable robots (SWRs) that provide active methods of actuation for assistive and augmentative purposes. A thorough investigation of major contributions in the field of an SWR is made to analyze trends in the field focused on fluidic and cable-driven systems, prevalent and successful approaches, and identify the future direction of SWRs and active actuation strategies. Types of soft actuators used in wearables are outlined, as well as general practices for fabrication methods of soft actuators and considerations for human-robot interface designs of garment-like exosuits. An overview of well-known and emerging upper body (UB)- and lower body (LB)-assistive technologies is categorized by the specific joints and degree of freedom (DoF) assisted and which actuator methodology is provided. Different use cases for SWRs are addressed, as well as implementation strategies and design applications.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":"1 1","pages":"e3"},"PeriodicalIF":3.4,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265391/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41601451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wearable Neuromodulators 可穿戴神经调节剂
Wearable technologies Pub Date : 2018-10-03 DOI: 10.5772/intechopen.76673
A. Shiraz, B. Leaker, A. Demosthenous
{"title":"Wearable Neuromodulators","authors":"A. Shiraz, B. Leaker, A. Demosthenous","doi":"10.5772/intechopen.76673","DOIUrl":"https://doi.org/10.5772/intechopen.76673","url":null,"abstract":"In neuromodulation, by delivering a form of stimulus to neural tissue the response of an associated neural circuit may be changed, enhanced or inhibited (i.e., modulated) as desired. This powerful technique may be used to treat various medical conditions as outlined in this chapter. After a brief introduction to the human nervous system, key example applications of electrical neuromodulation such as cardiac pacemakers, devices for pain relief, deep brain stimulation, cochlear implant and visual prosthesis and their respective methods of deployment are discussed. Furthermore, key features of wearable neuromodulators with reference to some existing devices are briefly reviewed. This chapter is concluded by a case study on design and development of a wearable device with non-invasive electrodes for treating lower urinary tract dysfunctions after spinal cord injury.","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5772/intechopen.76673","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44393474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Middleware-Driven Intelligent Glove for Industrial Applications 工业应用中间件驱动智能手套
Wearable technologies Pub Date : 2018-10-03 DOI: 10.5772/INTECHOPEN.76382
F. Aliyu, Basem Almadani
{"title":"Middleware-Driven Intelligent Glove for Industrial Applications","authors":"F. Aliyu, Basem Almadani","doi":"10.5772/INTECHOPEN.76382","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.76382","url":null,"abstract":"It is estimated that by the year 2020, 700 million wearable technology devices will be sold worldwide. One of the reasons is the industries’ need to increase their productivity. Some of the tools welcomed by industries are handheld devices such as tablets, PDAs and mobile phones. However, handheld devices are not ideal for industrial applications because they often subject users to fatigue during their long working hours. A viable solution to this problem is wearable devices. The advantage of wearable devices is that they become part of the user. Hence, they subject the user to less fatigue, thereby increas- ing their productivity. This chapter presents the development of an intelligent glove, which is designed to control actuators in an industrial environment. This system utilizes RTI connext data distributed service middleware to facilitate communication over WiFi. Our experiments show very promising results with maximum power consumption of 310 mW and latency as low as 23 ms. These results make the proposed system a perfect fit for most industrial applications.","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5772/INTECHOPEN.76382","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41812401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wearable Technology as a Tool to Motivate Health Behaviour: A Case Study 可穿戴技术作为激励健康行为的工具:一个案例研究
Wearable technologies Pub Date : 2018-10-03 DOI: 10.5772/INTECHOPEN.77002
V. Ferraro, Mila Stepanovic, S. Ferraris
{"title":"Wearable Technology as a Tool to Motivate Health Behaviour: A Case Study","authors":"V. Ferraro, Mila Stepanovic, S. Ferraris","doi":"10.5772/INTECHOPEN.77002","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.77002","url":null,"abstract":"According to the Scientific Committee on Occupational Exposure Limits, work-related exposures are estimated to account for about 15% of all adult respiratory diseases. Today, the use of personal protective equipment (PPE) is the only way for workers to prevent disease. Nevertheless, its use is highly sparse. Currently, products and systems embedded with wearable technologies are able to protect, motivate and educate users. The authors then suggested the development of a novel wearable system following the beliefs that wearable technology can be persuasive and elicit a conscious behaviour towards the use of the PPEs by consequently improving their health condition. The authors here describe the result of a Transnational Research Project named “ P_O_D Plurisensorial Device to prevent Occupational Disease. ” The chapter describes the findings achieved so far, the research phase and the new wearable system conceived as a possible example of how to use wearable technology as a useful tool to influence behavioural change.","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5772/INTECHOPEN.77002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44384300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Conductive Yarn Embroidered Circuits for System on Textiles 用于纺织品系统的导电纱线刺绣电路
Wearable technologies Pub Date : 2018-10-03 DOI: 10.5772/INTECHOPEN.76627
Jung-Sim Roh
{"title":"Conductive Yarn Embroidered Circuits for System on Textiles","authors":"Jung-Sim Roh","doi":"10.5772/INTECHOPEN.76627","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.76627","url":null,"abstract":"With the recent convergence of electronics and textile technology, various kinds of smart wearables are being developed, such as heating clothes, health monitoring clothes, and motion sensing clothes. In this study, the novel conductive embroidery yarns for touch sensing and signal transmission for system on textile (SoT) are introduced. The conductive yarn for touch sensing can be used as a user interface of smart clothes by constructing an embroidery circuit. The conductive yarn for signal transmission can be embroidered on smart clothing and used as a transmission line to transmit power and signal. The conductive yarns and their embroidered circuits were characterized and SoT prototypes using the embroidered circuit of these conductive yarns were presented. These e-textiles based on touch sensing and signal transmission can be comfortably applied for SoT and maintain electrical performance without being damaged by tensile force generated by the movement of the wearer.","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5772/INTECHOPEN.76627","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49460432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Advances in Wearable Sensing Technologies and Their Impact for Personalized and Preventive Medicine 可穿戴传感技术的进展及其对个性化和预防医学的影响
Wearable technologies Pub Date : 2018-10-03 DOI: 10.5772/INTECHOPEN.76916
N. Nasiri, A. Tricoli
{"title":"Advances in Wearable Sensing Technologies and Their Impact for Personalized and Preventive Medicine","authors":"N. Nasiri, A. Tricoli","doi":"10.5772/INTECHOPEN.76916","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.76916","url":null,"abstract":"Recent advances in miniaturized electronics, as well as mobile access to computational power, are fostering a rapid growth of wearable technologies. In particular, the application of such wearable technologies to health care enables to access more information from the patient than standard episodically testing conducted in health provider centres. Clinical, behavioural and self-monitored data collected by wearable devices provide a means for improving the early-stage detection and management of diseases as well as reducing the overall costs over more invasive standard diagnostics approaches. In this chapter, we will discuss some of the ongoing key innovations in materials science and micro/nano-fabrication technologies that are setting the basis for future personalized and preventive medicine devices and approaches. The design of wire- and power-less ultra-thin sensors fabricated on wearable biocompatible materials that can be placed in direct contact with the body tissues such as the skin will be reviewed, focusing on emerging solutions and bottlenecks. The application of nanotechnology for the fabrication of sophisticated minia- turized sensors will be presented. Exemplary sensor designs for the non-invasive measurement of ultra-low concentrations of important biomarkers will be discussed as case studies for the application of these emerging technologies.","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5772/INTECHOPEN.76916","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47425425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Smart Materials for Wearable Healthcare Devices 可穿戴医疗设备的智能材料
Wearable technologies Pub Date : 2018-10-03 DOI: 10.5772/INTECHOPEN.76604
Hanzhu Jin, Qinghui Jin, J. Jian
{"title":"Smart Materials for Wearable Healthcare Devices","authors":"Hanzhu Jin, Qinghui Jin, J. Jian","doi":"10.5772/INTECHOPEN.76604","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.76604","url":null,"abstract":"Wearable devices seem to have great potential that could result in a revolutionary nonclinical approach to health monitoring and diagnosing disease. With continued innovation and intensive attention to the materials and fabrication technologies, development of these healthcare devices is progressively encouraged. This chapter gives a concise review of some of the main concepts and approaches related to recent advances and developments in the scope of wearable devices from the perspective of emerging materials. A complementary section of the review linking these advanced materials with wearable device technologies is particularly specified. Some of the strong and weak points in development of each wearable material/device are clearly highlighted and criticized.","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5772/INTECHOPEN.76604","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45522666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Recent Progress in Nanostructured Zinc Oxide Grown on Fabric for Wearable Thermoelectric Power Generator with UV Shielding 可穿戴防紫外线热电发电机织物纳米氧化锌生长研究进展
Wearable technologies Pub Date : 2018-10-03 DOI: 10.5772/INTECHOPEN.76672
Pandiyarasan Veluswamy, S. Sathiyamoorthy, H. Ikeda, M. Elayaperumal, M. Maaza
{"title":"Recent Progress in Nanostructured Zinc Oxide Grown on Fabric for Wearable Thermoelectric Power Generator with UV Shielding","authors":"Pandiyarasan Veluswamy, S. Sathiyamoorthy, H. Ikeda, M. Elayaperumal, M. Maaza","doi":"10.5772/INTECHOPEN.76672","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.76672","url":null,"abstract":"Traditional materials for thermoelectric such as bismuth telluride have been studied and utilized commercially for the last half century, but recent advancements in materials selection are one of the principal function of the active thermoelectric device as it determines the reliability of the fabrication regarding technical and economic aspects. Recently, many researcher’s efforts have been made to utilize oxide nanomaterials for wearable thermo - electric power generator (WTPG) applications which may provide environmental stable, mechanical flexibility, and light weight with low cost of manufacturing. In precise, fabric containing oxide metals have shown great promise as P−/N-type materials with improved transport and UV shielding properties. On the other hand, we have focused on ZnO nano - structures as a high-efficiency WTPG material because they are non-toxic to skin, inex pensive and easy to obtain and possess attractive electronic properties, which means that they are available for clothing with low-cost fabrication. To our observation, we are chap tering about the thermoelectric properties of ZnO and their composite nanostructures coated cotton fabric via the solvothermal method for the first time.","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5772/INTECHOPEN.76672","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41408852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A Wearable Heating System with a Controllable e-Textile- Based Thermal Panel 一种可控制的基于电子纺织热面板的可穿戴加热系统
Wearable technologies Pub Date : 2018-04-04 DOI: 10.5772/INTECHOPEN.76192
S. Bahadir, U. K. Şahi̇n
{"title":"A Wearable Heating System with a Controllable e-Textile- Based Thermal Panel","authors":"S. Bahadir, U. K. Şahi̇n","doi":"10.5772/INTECHOPEN.76192","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.76192","url":null,"abstract":"Flexible textile heating systems present great advantage due to their ability to bend and hence could ensure uniform heating for irregular geometries. In cooler outer environment, the user requires his/her body to be kept warm for monitoring vital body functions within realistic thermal body balance constraints. In this chapter, heated vest with controllable e-textile-based thermal panel has been studied. Several e-textile-based thermal panels with different conductive yarns were produced using hot air welding technology under different manufacturing parameters. E-textile-based thermal panels were tested for their heating behaviors at varying direct current (DC) power levels. Based on the experimental results, the optimum e-textile-based thermal panel design was chosen considering its flexibility and uniform heating behavior. Moreover, a control algorithm with electrical circuit and electrical connection network was designed and assembled in an electronic control module. Finally, the electronic module consisting of power control and management system was integrated to attachable e-textile-based thermal panel in order to form a wearable heating vest.","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5772/INTECHOPEN.76192","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46068721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
A Proposal for New Algorithm that Defines Gait-Induced Acceleration and Gait Cycle in Daily Parkinsonian Gait Disorders 一种定义帕金森步态障碍中步态诱导加速度和步态周期的新算法
Wearable technologies Pub Date : 2018-04-04 DOI: 10.5772/INTECHOPEN.75483
Masahiko Suzuki, M. Yogo, M. Morita, H. Terashi, M. Iijima, M. Yoneyama, M. Takada, H. Utsumi, Y. Okuma, A. Hayashi, S. Orimo, H. Mitoma
{"title":"A Proposal for New Algorithm that Defines Gait-Induced Acceleration and Gait Cycle in Daily Parkinsonian Gait Disorders","authors":"Masahiko Suzuki, M. Yogo, M. Morita, H. Terashi, M. Iijima, M. Yoneyama, M. Takada, H. Utsumi, Y. Okuma, A. Hayashi, S. Orimo, H. Mitoma","doi":"10.5772/INTECHOPEN.75483","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.75483","url":null,"abstract":"We developed a new device, the portable gait rhythmogram (PGR), to record up to 70 hrs of movement-induced accelerations. Acceleration values induced by various movements, averaged every 10 min, showed gamma distribution, and the mean value of this distribu- tion was used as an index of the amount of overall movements. Furthermore, the PGR algorithm can specify gait-induced accelerations using the pattern-matching method. Analysis of the relationship between gait-induced accelerations and gait cycle duration makes it possible to quantify Parkinson’s disease (PD)-specific pathophysiological mechanisms underlying gait disorders. Patients with PD showed the following disease-specific patterns: (1) reduced amount of overall movements and (2) low amplitude of gait-induced accelerations in the early stages of the disease, which was compensated by fast stepping. Loss of compensation was associated with slow stepping gait, (3) narrow range of gait-induced acceleration amplitude and gait cycle duration, suggesting monotony, and (4) evident motor fluctuations during the day by tracing changes in the above two parameters. Prominent motor fluctuation was associated with frequent switching between slow stepping mode and active mode. These findings suggest that monitor - ing various movement- and gait-induced accelerations allows the detection of specific changes in PD. We conclude that continuous long-term monitoring of these parameters can provide accurate quantitative assessment of parkinsonian clinical motor signs.","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5772/INTECHOPEN.75483","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44356595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信