Wearable technologies最新文献

筛选
英文 中文
Concurrent validity of inertial measurement units in range of motion measurements of upper extremity: A systematic review and meta-analysis. 惯性测量单元在上肢运动范围测量中的并发有效性:系统回顾与荟萃分析。
IF 3.4
Wearable technologies Pub Date : 2024-10-04 eCollection Date: 2024-01-01 DOI: 10.1017/wtc.2024.6
Jinfeng Li, Fanji Qiu, Liaoyan Gan, Li-Shan Chou
{"title":"Concurrent validity of inertial measurement units in range of motion measurements of upper extremity: A systematic review and meta-analysis.","authors":"Jinfeng Li, Fanji Qiu, Liaoyan Gan, Li-Shan Chou","doi":"10.1017/wtc.2024.6","DOIUrl":"10.1017/wtc.2024.6","url":null,"abstract":"<p><p>Inertial measurement units (IMUs) have proven to be valuable tools in measuring the range of motion (RoM) of human upper limb joints. Although several studies have reported on the validity of IMUs compared to the gold standard (optical motion capture system, OMC), a quantitative summary of the accuracy of IMUs in measuring RoM of upper limb joints is still lacking. Thus, the primary objective of this systematic review and meta-analysis was to determine the concurrent validity of IMUs for measuring RoM of the upper extremity in adults. Fifty-one articles were included in the systematic review, and data from 16 were pooled for meta-analysis. Concurrent validity is excellent for shoulder flexion-extension (Pearson's <i>r</i> = 0.969 [0.935, 0.986], ICC = 0.935 [0.749, 0.984], mean difference = -3.19 (<i>p</i> = 0.55)), elbow flexion-extension (Pearson's <i>r</i> = 0.954 [0.929, 0.970], ICC = 0.929 [0.814, 0.974], mean difference = 10.61 (<i>p</i> = 0.36)), wrist flexion-extension (Pearson's <i>r</i> = 0.974 [0.945, 0.988], mean difference = -4.20 (<i>p</i> = 0.58)), good to excellent for shoulder abduction-adduction (Pearson's <i>r</i> = 0.919 [0.848, 0.957], ICC = 0.840 [0.430, 0.963], mean difference = -7.10 (<i>p</i> = 0.50)), and elbow pronation-supination (Pearson's <i>r</i> = 0.966 [0.939, 0.981], ICC = 0.821 [0.696, 0.900]). There are some inconsistent results for shoulder internal-external rotation (Pearson's <i>r</i> = 0.939 [0.894, 0.965], mean difference = -9.13 (<i>p</i> < 0.0001)). In conclusion, the results support IMU as a viable instrument for measuring RoM of upper extremity, but for some specific joint movements, such as shoulder rotation and wrist ulnar-radial deviation, IMU measurements need to be used with caution.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503723/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GLULA: Linear attention-based model for efficient human activity recognition from wearable sensors GLULA:从可穿戴传感器高效识别人类活动的线性注意力模型
Wearable technologies Pub Date : 2024-04-05 DOI: 10.1017/wtc.2024.5
Aldiyar Bolatov, A. Yessenbayeva, Adnan Yazici
{"title":"GLULA: Linear attention-based model for efficient human activity recognition from wearable sensors","authors":"Aldiyar Bolatov, A. Yessenbayeva, Adnan Yazici","doi":"10.1017/wtc.2024.5","DOIUrl":"https://doi.org/10.1017/wtc.2024.5","url":null,"abstract":"Body-worn sensor data is used in monitoring patient activity during rehabilitation and also can be extended to controlling rehabilitation devices based on the activity of the person. The primary focus of research has been on effectively capturing the spatiotemporal dependencies in the data collected by these sensors and efficiently classifying human activities. With the increasing complexity and size of models, there is a growing emphasis on optimizing their efficiency in terms of memory usage and inference time for real-time usage and mobile computers. While hybrid models combining convolutional and recurrent neural networks have shown strong performance compared to traditional approaches, self-attention-based networks have demonstrated even superior results. However, instead of relying on the same transformer architecture, there is an opportunity to develop a novel framework that incorporates recent advancements to enhance speed and memory efficiency, specifically tailored for human activity recognition (HAR) tasks. In line with this approach, we present GLULA, a unique architecture for HAR. GLULA combines gated convolutional networks, branched convolutions, and linear self-attention to achieve efficient and powerful solutions. To enhance the performance of our proposed architecture, we employed manifold mixup as an augmentation variant which proved beneficial in limited data settings. Extensive experiments were conducted on five benchmark datasets: PAMAP2, SKODA, OPPORTUNITY, DAPHNET, and USC-HAD. Our findings demonstrate that GLULA outperforms recent models in the literature on the latter four datasets but also exhibits the lowest parameter count and close to the fastest inference time among state-of-the-art models.","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140738204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acute suppression of lower limb spasm by sacral afferent stimulation for people with spinal cord injury: A pilot study 脊髓损伤患者通过骶骨传入神经刺激急性抑制下肢痉挛:试点研究
Wearable technologies Pub Date : 2024-04-05 DOI: 10.1017/wtc.2024.4
Sarah Massey, Sean Doherty, Lynsey Duffell, Mike Craggs, Sarah L. Knight
{"title":"Acute suppression of lower limb spasm by sacral afferent stimulation for people with spinal cord injury: A pilot study","authors":"Sarah Massey, Sean Doherty, Lynsey Duffell, Mike Craggs, Sarah L. Knight","doi":"10.1017/wtc.2024.4","DOIUrl":"https://doi.org/10.1017/wtc.2024.4","url":null,"abstract":"Lower limb spasm and spasticity may develop following spinal cord injury (SCI), causing hyper-excitability and increased tone, which can impact function and quality of life. Pharmaceutical interventions for spasticity may cause unwanted side effects such as drowsiness and weakness. Invasive and non-invasive electrical stimulation has been shown to reduce spasticity without these side effects. The aim of this study was to investigate the effect of sacral afferent stimulation (SAS), through surface electrical stimulation of the dorsal genital nerve (N = 7), and through implanted electrodes on the sacral afferent nerve roots, on lower limb spasm and spasticity (N = 2). Provoked spasms were interrupted with conditional SAS, where stimulation commenced following a provoked spasm, or unconditional stimulation, which was applied continuously. Conditionally and unconditionally applied SAS was shown to suppress acute provoked spasms in people with SCI. There was a statistically significant reduction in area under the curve of quadriceps electromyography during acute spasm with SAS compared to a control spasm. These results show that SAS may provide a safe, low-cost method of reducing acute spasm and spasticity in people living with SCI. SAS through implanted electrodes may also provide an additional function to sacral nerve stimulation devices.","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140736632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum: Validity of estimating center of pressure during walking and running with plantar load from a three-sensor wireless insole - ERRATUM. 勘误:利用三传感器无线鞋垫估算步行和跑步时足底压力中心的有效性 - ERRATUM。
Wearable technologies Pub Date : 2024-03-21 eCollection Date: 2024-01-01 DOI: 10.1017/wtc.2023.22
Richard A Brindle, Chris M Bleakley, Jeffrey B Taylor, Robin M Queen, Kevin R Ford
{"title":"Erratum: Validity of estimating center of pressure during walking and running with plantar load from a three-sensor wireless insole - ERRATUM.","authors":"Richard A Brindle, Chris M Bleakley, Jeffrey B Taylor, Robin M Queen, Kevin R Ford","doi":"10.1017/wtc.2023.22","DOIUrl":"https://doi.org/10.1017/wtc.2023.22","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1017/wtc.2022.5.].</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10988133/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140856809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel neck brace to characterize neck mobility impairments following neck dissection in head and neck cancer patients - ADDENDUM. 一种新型颈托,用于描述头颈部癌症患者颈部切除术后颈部活动障碍的特征 - 增补。
Wearable technologies Pub Date : 2024-02-16 eCollection Date: 2024-01-01 DOI: 10.1017/wtc.2024.3
Biing-Chwen Chang, Haohan Zhang, Sallie Long, Adetokunbo Obayemi, Scott H Troob, Sunil K Agrawal
{"title":"A novel neck brace to characterize neck mobility impairments following neck dissection in head and neck cancer patients - ADDENDUM.","authors":"Biing-Chwen Chang, Haohan Zhang, Sallie Long, Adetokunbo Obayemi, Scott H Troob, Sunil K Agrawal","doi":"10.1017/wtc.2024.3","DOIUrl":"https://doi.org/10.1017/wtc.2024.3","url":null,"abstract":"","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936404/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140133556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Benchmarking commercially available soft and rigid passive back exoskeletons for an industrial workplace. 为工业工作场所的市售软质和硬质被动式背部外骨骼设定基准。
Wearable technologies Pub Date : 2024-02-15 eCollection Date: 2024-01-01 DOI: 10.1017/wtc.2024.2
Mohamed I Mohamed Refai, Alejandro Moya-Esteban, Lynn van Zijl, Herman van der Kooij, Massimo Sartori
{"title":"Benchmarking commercially available soft and rigid passive back exoskeletons for an industrial workplace.","authors":"Mohamed I Mohamed Refai, Alejandro Moya-Esteban, Lynn van Zijl, Herman van der Kooij, Massimo Sartori","doi":"10.1017/wtc.2024.2","DOIUrl":"10.1017/wtc.2024.2","url":null,"abstract":"<p><p>Low-back pain is a common occupational hazard for industrial workers. Several studies show the advantages of using rigid and soft back-support passive exoskeletons and exosuits (exos) to reduce the low-back loading and risk of injury. However, benefits of using these exos have been shown to be task-specific. Therefore, in this study, we developed a benchmarking approach to assess exos for an industrial workplace at Hankamp Gears B.V. We assessed two rigid (Laevo Flex, Paexo back) and two soft (Auxivo Liftsuit 1.0, and Darwing Hakobelude) exos for tasks resembling the workplace. We measured the assistive moment provided by each exo and their respective influence on muscle activity as well as the user's perception of comfort and exertion. Ten participants performed four lifting tasks (<i>Static</i> hold, <i>Asymmetric</i>, <i>Squat</i>, and <i>Stoop</i>), while their electromyography and subjective measures were collected. The two rigid exos provided the largest assistance during the <i>Dynamic</i> tasks. Reductions in erector spinae activity were seen to be task-specific, with larger reductions for the two rigid exos. Overall, Laevo Flex offered a good balance between assistive moments, reductions in muscle activity, as well as user comfort and reductions in perceived exertion. Thus, we recommend benchmarking exos for intended use in the industrial workplace. This will hopefully result in a better adoption of the back-support exoskeletons in the workplace and help reduce low-back pain.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10952052/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140178158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of a wearable shoulder exoskeleton robot with dual-purpose gravity compensation and a compliant misalignment compensation mechanism. 设计具有两用重力补偿和顺应性错位补偿机制的可穿戴肩部外骨骼机器人。
IF 3.4
Wearable technologies Pub Date : 2024-02-12 eCollection Date: 2024-01-01 DOI: 10.1017/wtc.2024.1
John Atkins, Dongjune Chang, Hyunglae Lee
{"title":"Design of a wearable shoulder exoskeleton robot with dual-purpose gravity compensation and a compliant misalignment compensation mechanism.","authors":"John Atkins, Dongjune Chang, Hyunglae Lee","doi":"10.1017/wtc.2024.1","DOIUrl":"10.1017/wtc.2024.1","url":null,"abstract":"<p><p>This paper presents the design and validation of a wearable shoulder exoskeleton robot intended to serve as a platform for assistive controllers that can mitigate the risk of musculoskeletal disorders seen in workers. The design features a four-bar mechanism that moves the exoskeleton's center of mass from the upper shoulders to the user's torso, dual-purpose gravity compensation mechanism located inside the four-bar's linkages that supports the full gravitational loading from the exoskeleton with partial user's arm weight compensation, and a novel 6 degree-of-freedom (DoF) compliant misalignment compensation mechanism located between the end effector and the user's arm to allow shoulder translation while maintaining control of the arm's direction. Simulations show the four-bar design lowers the center of mass by  cm and the kinematic chain can follow the motion of common upper arm trajectories. Experimental tests show the gravity compensation mechanism compensates gravitational loading within  Nm over the range of shoulder motion and the misalignment compensation mechanism has the desired 6 DoF stiffness characteristics and range of motion to adjust for shoulder center translation. Finally, a workspace admittance controller was implemented and evaluated showing the system is capable of accurately reproducing simulated impedance behavior with transparent low-impedance human operation.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936389/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140133557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Versatile and non-versatile occupational back-support exoskeletons: A comparison in laboratory and field studies - ADDENDUM. 多功能和非多功能职业性背部支撑外骨骼:实验室和实地研究比较 - 增补。
Wearable technologies Pub Date : 2024-02-12 eCollection Date: 2024-01-01 DOI: 10.1017/wtc.2023.27
Tommaso Poliero, Matteo Sposito, Stefano Toxiri, Christian Di Natali, Matteo Iurato, Vittorio Sanguineti, Darwin G Caldwell, Jesús Ortiz
{"title":"Versatile and non-versatile occupational back-support exoskeletons: A comparison in laboratory and field studies - ADDENDUM.","authors":"Tommaso Poliero, Matteo Sposito, Stefano Toxiri, Christian Di Natali, Matteo Iurato, Vittorio Sanguineti, Darwin G Caldwell, Jesús Ortiz","doi":"10.1017/wtc.2023.27","DOIUrl":"https://doi.org/10.1017/wtc.2023.27","url":null,"abstract":"","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936285/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140133558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of transcutaneous spinal cord stimulation on the balance and neurophysiological characteristics of young healthy adults. 经皮脊髓刺激对年轻健康成年人的平衡和神经生理特征的影响。
Wearable technologies Pub Date : 2024-02-08 eCollection Date: 2024-01-01 DOI: 10.1017/wtc.2023.24
Isirame Omofuma, Robert Carrera, Jayson King-Ori, Sunil K Agrawal
{"title":"The effect of transcutaneous spinal cord stimulation on the balance and neurophysiological characteristics of young healthy adults.","authors":"Isirame Omofuma, Robert Carrera, Jayson King-Ori, Sunil K Agrawal","doi":"10.1017/wtc.2023.24","DOIUrl":"10.1017/wtc.2023.24","url":null,"abstract":"<p><p>Transcutaneous spinal cord stimulation (TSCS) is gaining popularity as a noninvasive alternative to epidural stimulation. However, there is still much to learn about its effects and utility in assisting recovery of motor control. In this study, we applied TSCS to healthy subjects concurrently performing a functional training task to study its effects during a training intervention. We first carried out neurophysiological tests to characterize the H-reflex, H-reflex recovery, and posterior root muscle reflex thresholds, and then conducted balance tests, first without TSCS and then with TSCS. Balance tests included trunk perturbations in forward, backward, left, and right directions, and subjects' balance was characterized by their response to force perturbations. A balance training task involved the subjects playing a catch-and-throw game in virtual reality (VR) while receiving trunk perturbations and TSCS. Balance tests with and without TSCS were conducted after the VR training to measure subjects' post-training balance characteristics and then neurophysiological tests were carried out again. Statistical comparisons using t-tests between the balance and neurophysiological data collected before and after the VR training intervention found that the immediate effect of TSCS was to increase muscle activity during forward perturbations and to reduce balance performance in that direction. Muscle activity decreased after training and even more once TSCS was turned off. We thus observed an interaction of effects where TSCS increased muscle activity while the physical training decreased it.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936317/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140133759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The efficacy of different torque profiles for weight compensation of the hand. 不同扭矩曲线对手部重量补偿的功效。
Wearable technologies Pub Date : 2024-01-29 eCollection Date: 2024-01-01 DOI: 10.1017/wtc.2023.23
Bas J van der Burgh, Suzanne J Filius, Giuseppe Radaelli, Jaap Harlaar
{"title":"The efficacy of different torque profiles for weight compensation of the hand.","authors":"Bas J van der Burgh, Suzanne J Filius, Giuseppe Radaelli, Jaap Harlaar","doi":"10.1017/wtc.2023.23","DOIUrl":"10.1017/wtc.2023.23","url":null,"abstract":"<p><p>Orthotic wrist supports will be beneficial for people with muscular weakness to keep their hand in a neutral rest position and prevent potential wrist contractures. Compensating the weight of the hands is complex since the level of support depends on both wrist and forearm orientations. To explore simplified approaches, two different weight compensation strategies (<i>constant</i> and <i>linear</i>) were compared to the theoretical ideal <i>sinusoidal</i> profile and no compensation in eight healthy subjects using a mechanical wrist support system. All three compensation strategies showed a significant reduction of 47-53% surface electromyography activity in the anti-gravity m. extensor carpi radialis. However, for the higher palmar flexion region, a significant increase of 44-61% in the m. flexor carpi radialis was found for all compensation strategies. No significant differences were observed between the various compensation strategies. Two conclusions can be drawn: (1) a simplified torque profile (e.g., constant or linear) for weight compensation can be considered as equally effective as the theoretically ideal sinusoidal profile and (2) even the theoretically ideal profile provides no perfect support as other factors than weight, such as passive joint impedance, most likely influence the required compensation torque for the wrist joint.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10952050/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140178710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信