Xiao Yang , Rui Wang , Mengdi Yang , Quanfeng Liu , Wenju Zhang , Shengli Guo
{"title":"Differential responses of soil CO2 dynamics along soil depth to rainfall patterns in the Chinese Loess Plateau","authors":"Xiao Yang , Rui Wang , Mengdi Yang , Quanfeng Liu , Wenju Zhang , Shengli Guo","doi":"10.1016/j.agee.2024.109306","DOIUrl":"10.1016/j.agee.2024.109306","url":null,"abstract":"<div><div>Soil surface carbon dioxide (CO<sub>2</sub>) efflux not only originates from topsoils, but also significantly involves contributions from deeper soil layers. Soil surface CO<sub>2</sub> efflux significantly fluctuated with rainfall patterns in arid and semiarid regions. However, how soil CO<sub>2</sub> dynamics respond at different soil depths to varying rainfall patterns remains largely unclear. To address this gap, we continuously monitored soil CO<sub>2</sub> concentrations, temperature, and moisture content at 10 cm, 50 cm, and 100 cm depths <em>in situ</em> under cropland and orchards located in the semiarid Loess Plateau over a full year. Rainfall events were meticulously recorded, categorizing them into light (<10 mm), moderate (10 mm–40 mm), and heavy (>40 mm) to discern their impact on soil CO<sub>2</sub> dynamics. Specifically, soil CO<sub>2</sub> flux was not affected during light rainfall. Moderate and heavy rainfall decreased soil CO<sub>2</sub> flux at 0–10 cm by an average of 70% and 83%, respectively. This decrease was associated with reduced gas diffusivity across rainfall patterns. For instance, heavy rainfall reduced gas diffusivity by an average of 83% and 53% at 10 cm and 50 cm soil depths, respectively. Furthermore, soil CO<sub>2</sub> concentrations slightly dropped as soil temperature decreased at 10 cm depth during light rainfall. Soil CO<sub>2</sub> concentrations at 10 cm and 50 cm depths initially decreased by up to 15% and subsequently increasing by up to 52% during moderate and heavy rainfall. This response was likely influenced by temperature reductions and subsequent rises in moisture content, with a hysteretic response of soil CO<sub>2</sub> concentrations to temperature. The rapid increase in soil CO<sub>2</sub> concentrations was mainly due to a substantial decrease in gas diffusivity. Notably, heavy rainfall induced a delayed increase in soil moisture content at 50 cm depth and a significant decrease in CO<sub>2</sub> concentration by 16% at 100 cm depth. A substantial decrease in soil CO<sub>2</sub> concentrations in deep soil layers was primarily related to decreased soil temperature. Additionally, the observed soil CO<sub>2</sub> dynamics were partly attributed to biotic factors (microbial biomass carbon and root density) mainly on cropland, but mainly abiotic factors (soil organic carbon and bulk density) under orchards. Overall, these results suggest that reduced gas diffusivity triggered by increased soil moisture content in topsoils and weakened biological processes caused by decreased soil temperature in deep soils typically drive the differential responses of soil CO<sub>2</sub> dynamics to rainfall patterns.</div></div>","PeriodicalId":7512,"journal":{"name":"Agriculture, Ecosystems & Environment","volume":"378 ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dereje T. Demie , Daniel Wallach , Thomas F. Döring , Frank Ewert , Thomas Gaiser , Sofia Hadir , Gunther Krauss , Madhuri Paul , Ixchel M. Hernández-Ochoa , Rémi Vezy , Sabine J. Seidel
{"title":"Evaluating a new intercrop model for capturing mixture effects with an extensive intercrop dataset","authors":"Dereje T. Demie , Daniel Wallach , Thomas F. Döring , Frank Ewert , Thomas Gaiser , Sofia Hadir , Gunther Krauss , Madhuri Paul , Ixchel M. Hernández-Ochoa , Rémi Vezy , Sabine J. Seidel","doi":"10.1016/j.agee.2024.109302","DOIUrl":"10.1016/j.agee.2024.109302","url":null,"abstract":"<div><div>Cereal-legume intercrops have numerous advantages over monocultures. However, the intercrop’s performance depends on the plant genotypes, management, and environment. Process-based agro-ecosystem models are important tools to evaluate the performance of intercrop systems as field experiments are limited in the number of treatments. The objective of this study was to calibrate and evaluate a new process-based intercrop model using an extensive experimental data set and to test whether the model is suitable for comparing intercrop management strategies. The data set includes all combinations of 12 different spring wheat entries (SW, <em>Triticum aestivum L</em>.) with two faba bean (FB, <em>Vicia faba L</em>.) cultivars, at two sowing densities, in three different environments. The results show that the intercrop model was capable of simulating the absolute mixture (intercrop) effects (AME) for grain yield, above-ground biomass, and topsoil root biomass, for both crops. However, the intercrop model does not perform better than a benchmark that ignores the intercrop effects when simulating plant height, fraction of intercepted radiation, volumetric soil water content, and subsoil root biomass. The intercrop model predicted reasonably well the differences between species and between SW cultivars for grain yield and aboveground plant biomass. Overall, the tested process-based model can be a useful tool for designing and pre-evaluation multiple combinations of crop management, species, and cultivars suitable for intercropping in diverse conditions.</div></div>","PeriodicalId":7512,"journal":{"name":"Agriculture, Ecosystems & Environment","volume":"378 ","pages":"Article 109302"},"PeriodicalIF":6.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142318977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Barbara Mateos Perez Bianco de Araújo , Malte von Bloh , Verena Rupprecht , Hanno Schaefer , Senthold Asseng
{"title":"Bird’s-eye view: Remote sensing insights into the impact of mowing events on Eurasian Curlew habitat selection","authors":"Barbara Mateos Perez Bianco de Araújo , Malte von Bloh , Verena Rupprecht , Hanno Schaefer , Senthold Asseng","doi":"10.1016/j.agee.2024.109299","DOIUrl":"10.1016/j.agee.2024.109299","url":null,"abstract":"<div><div>Eurasian Curlew populations are declining in Europe despite conservation efforts. Mowing practices may attract Curlews to areas with a higher chance of survival, but this potential cannot be assessed due to limited documentation on mowing dates. This study developed a remote sensing method for mowing event detection by applying cloud masking, outlier detection via Isolation Forest, and data smoothing on satellite images to create a Normalised Difference Vegetation Index (NDVI) time series. GPS data from the LBV Society for the Protection of Birds and Nature in Bavaria was used to examine changes in Curlews’ field use under mown and unmown conditions in their breeding areas. The developed approach detected 80 % of mowing events in trained data and 84 % in validation data with a <em>±</em> three-day precision. Curlews visited fields significantly less often under unmown conditions and their field use increased substantially shortly after mowing events. Their reaction was stronger later in the season and is likely related to non-territorial behaviour. Fields under regulated mowing contracts showed more intensive Curlew activity than those conventionally managed. The workflow introduced for identifying mowing events through optical satellite imagery was designed with an emphasis on model robustness and on being accessible and reproducible for conservation practitioners and researchers. This simplified method successfully provided insights into factors influencing Curlews’ use of grassland during their stay in their breeding areas. Mowing practices significantly impact their habitat choices, suggesting their use as an innovative conservation approach to recover Curlew populations.</div></div>","PeriodicalId":7512,"journal":{"name":"Agriculture, Ecosystems & Environment","volume":"378 ","pages":"Article 109299"},"PeriodicalIF":6.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167880924004171/pdfft?md5=f3145b18ae8199d40b04aac3662efcfd&pid=1-s2.0-S0167880924004171-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hanqiang Lyu , Aizhong Yu , Qiang Chai , Feng Wang , Yulong Wang , Pengfei Wang , Yongpan Shang , Xuehui Yang
{"title":"Enhancing soil quality and crop yield by increasing dominant bacterial abundance and reducing bacterial diversity under no-tillage with total green manure incorporation","authors":"Hanqiang Lyu , Aizhong Yu , Qiang Chai , Feng Wang , Yulong Wang , Pengfei Wang , Yongpan Shang , Xuehui Yang","doi":"10.1016/j.agee.2024.109303","DOIUrl":"10.1016/j.agee.2024.109303","url":null,"abstract":"<div><div>The abundance and diversity of soil microbial communities are important indicators for evaluating soil health. However, the microbial mechanism by which green manure incorporation affects soil quality and crop yield remains unclear. Field research was conducted in the Hexi Corridor to investigate the correlations between microbial communities and soil quality across various green manure management strategies. During the flowering period of common vetch, four management strategies were implemented: tillage with total green manure incorporation (TG), no-tillage with mulching using total green manure (NTG), tillage with only root incorporation (T), and no-tillage with the removal of aboveground green manure (NT), with conventional tillage without green manure as the control (CT). Total green manure incorporation significantly improved the soil quality index (SQI) and maize yield, with NTG demonstrating a more pronounced effect than TG. Soil organic matter (SOM) and total nitrogen (TN) were the primary contributors to the SQI. The relative abundances of the predominant phyla and genera increased in NTG, particularly <em>Actinobacteria</em> and <em>Arthrobacter</em>, which correlated with soil characteristics. Furthermore, the application of NTG and TG resulted in a reduction in bacterial alpha diversity. Regression analysis revealed negative correlations between bacterial alpha diversity and the SOM, TN, and mineral N contents. The diversity of the bacterial community negatively affected SQI. The primary factors contributing to the decrease in bacterial diversity were soil pH, nitrate nitrogen (NO<sub>3</sub><sup>−</sup>-N), and ammonium-nitrogen (NH<sub>4</sub><sup>+</sup>-N). In summary, NTG reduced bacterial diversity, and improved the abundance of dominant bacteria by optimizing soil characteristics, thereby increasing soil quality.</div></div>","PeriodicalId":7512,"journal":{"name":"Agriculture, Ecosystems & Environment","volume":"378 ","pages":"Article 109303"},"PeriodicalIF":6.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huan Yang , Yahan Su , Li Wang , Joann K. Whalen , Tian Pu , Xiaochun Wang , Feng Yang , Taiwen Yong , Jiang Liu , Yanhong Yan , Wenyu Yang , Yushan Wu
{"title":"Strip intercropped maize with more light interception during post-silking promotes photosynthesized carbon sequestration in the soil","authors":"Huan Yang , Yahan Su , Li Wang , Joann K. Whalen , Tian Pu , Xiaochun Wang , Feng Yang , Taiwen Yong , Jiang Liu , Yanhong Yan , Wenyu Yang , Yushan Wu","doi":"10.1016/j.agee.2024.109301","DOIUrl":"10.1016/j.agee.2024.109301","url":null,"abstract":"<div><p>Photosynthesized carbon assimilation and allocation are crucial for plant responses to environmental changes, such as light. Intercropping typically enhances light interception. However, the effects on photosynthesized carbon allocation and microbial immobilization in intercropping systems remain unclear. We investigated light interception, photosynthetic rate, biomass, grain yield, soil organic carbon (SOC), and performed <sup>13</sup>CO<sub>2</sub> pulse labeling to trace carbon footprints in the plant-soil system under long-term maize-soybean relay strip intercropping and maize monocropping systems. Results showed that, compared to monocropped maize, intercropped maize exhibited a 15.4 % increase in plant <sup>13</sup>C fixation and significantly greater belowground carbon allocation, with increases of 52.7 % in roots, 64.1 % in rhizosphere soil, and 81.9 % in bulk soil. These outcomes were attributed to enhancements of 30.2 % in light interception and 16.5 % in photosynthetic rate during the post-silking period. At silking, increased light interception in intercropped maize directly contributed to belowground carbon allocation. During the filling period, the source-sink relationship between limited kernel sink capacity and sufficient source strength regulated belowground carbon allocation, resulting in no significant difference in grain yield between intercropping and monocropping. Additionally, the higher <sup>13</sup>C content in microbial biomass (by 99.8 %) suggested increased microbial utilization of new carbon, potentially enhancing microbial carbon immobilization under intercropping. After 10 years of cultivation, intercropping resulted in a 13.9 % increase in SOC compared to monocropping. Overall, intercropped maize benefited from enhanced light interception, which facilitated plant carbon fixation and increased photosynthesized carbon sequestration in the soil through improved photosynthesized carbon allocation to the soil and microbial carbon immobilization. These findings demonstrate that strip intercropping cultivation can promote photosynthesized carbon sequestration in soil, thereby enhancing the carbon sink capacity of agroecosystems.</p></div>","PeriodicalId":7512,"journal":{"name":"Agriculture, Ecosystems & Environment","volume":"378 ","pages":"Article 109301"},"PeriodicalIF":6.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142270768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sabine Birnbeck , Johannes Burmeister , Sebastian Wolfrum , Bernd Panassiti , Roswitha Walter
{"title":"Riparian buffer strips promote biomass, species richness and abundance of flying insects in agricultural landscapes","authors":"Sabine Birnbeck , Johannes Burmeister , Sebastian Wolfrum , Bernd Panassiti , Roswitha Walter","doi":"10.1016/j.agee.2024.109300","DOIUrl":"10.1016/j.agee.2024.109300","url":null,"abstract":"<div><p>Agricultural intensification is debated as one of the major drivers for the decline of insect biodiversity. Agri-environmental schemes (AES) are a common measure to promote biodiversity in agriculture by granting compensational payments to farmers for environmentally friendly practices. In this study we examined the effect of buffer strips of at least 5 m width, adjacent to small watercourses and drainage ditches, on insect biomass and insect species richness in agricultural landscapes. We selected ten arable fields in each of four regions in lower and upper Bavaria, Southern Germany. 25 out of 40 sites had a buffer strip between arable crops and watercourse. Insects were sampled at three time periods (May/June, June/July and August/September) for two weeks each. In each period two samples were collected (one per week). On each site Malaise traps were set up in 5 and 80 m distance to the embankment of the watercourse. Half of the samples was then subjected to metabarcoding and the other half was classified into different insect groups by morphological identification and the number of the individuals for each group was counted. For hoverflies (Syrphidae), individuals were identified at species-level. Data on vegetation structure (cover of grasses and herbs) in the studied riparian buffer strips was collected and correlated with number of species, abundances and biomass of flying insects. The five taxonomic orders with the highest species richness and individual numbers were: Diptera, Hymenoptera, Coleoptera, Lepidoptera and Hemiptera. Diptera dominated hereby with 34% of all species and 81% of all individuals. On average, mixed models indicated 31% higher insect biomass, 15% higher species richness and 29% higher individual numbers of flying insects in buffer strips at 5 m distance to the watercourse compared to sites with no buffer strip. The effect was even stronger for butterflies (32% higher species species richness, 70% more individuals) and hoverflies (24% higher species richness, 51% more individuals). In the presence of a buffer strip significantly higher numbers were found for total individuals, Diptera, Hymenoptera and Coleoptera. In 80 m distance to the watercourse, the samples of flying insects were not significantly influenced by a riparian buffer strip. This study highlights the importance of buffer strips in agricultural regions and their multifunctional potential in fostering biodiversity additionally to their acknowledged use for water protection. Ideally, buffer strips are rich in herbs and inflorescences and are therefore beneficial for the insect fauna by serving as valuable habitat with high potential connectivity at landscape level.</p></div>","PeriodicalId":7512,"journal":{"name":"Agriculture, Ecosystems & Environment","volume":"378 ","pages":"Article 109300"},"PeriodicalIF":6.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142270907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Arthropod abundance is most strongly driven by crop and semi-natural habitat type rather than management in an intensive agricultural landscape in the Netherlands","authors":"Iryna Litovska , Fons van der Plas, David Kleijn","doi":"10.1016/j.agee.2024.109298","DOIUrl":"10.1016/j.agee.2024.109298","url":null,"abstract":"<div><p>The intensification of agriculture has been identified as one of the main causes of arthropod declines. To halt the decline of arthropods, changes in farming practices and management of surrounding habitats may therefore be needed. A key challenge is to identify which changes in management approaches are most effective in restoring biodiversity. Therefore, this study examines arthropod abundance and diversity in different agricultural and semi-natural habitats, and among different management types. Arthropods were sampled three times in spring and summer of 2022 and 2023 with emergence traps in 128 unique sites in an intensively farmed area in Western Netherlands. These sites included a variety of crops as well as semi-natural habitats. Our study showed that on average the abundance and diversity of arthropods of several taxa was lower in crop habitats compared to semi-natural habitats. However, these effects strongly varied among crop species. For instance, alfalfa, spelt, spring and winter wheat fields (that often had a high plant cover) supported similar arthropod diversity and abundance levels as semi-natural habitats. Interestingly, in crop fields most variables related to field management, such as herbicide applications or amount of nitrogen fertilizers, did not show any significant relationship with arthropod abundances or diversity. The number of days after cultivation was an exception, and was positively related to total arthropod abundance, Hymenoptera and Collembola abundances, and Coleoptera family diversity. Within semi-natural habitats, number of days after mowing was positively related to total arthropod abundance, Diptera, Hemiptera and Hymenoptera abundances, and Hemiptera family diversity. Additionally, plant cover was positively related to total arthropod abundance. Overall, our findings suggest that crop species and management practices that increase plant cover in spring and early summer are increasing arthropod abundance and, to a lesser extent, higher-taxa diversity in intensively farmed agricultural landscapes.</p></div>","PeriodicalId":7512,"journal":{"name":"Agriculture, Ecosystems & Environment","volume":"378 ","pages":"Article 109298"},"PeriodicalIF":6.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016788092400416X/pdfft?md5=e46bda735b93bbe110c3fdf65f127a84&pid=1-s2.0-S016788092400416X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142243637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paolo Biella , Fausto Ramazzotti , Giulia Parolo , Andrea Galimberti , Massimo Labra , Mattia Brambilla
{"title":"Vineyard footprint on pollinators is mediated by flower vegetation, organic farming, seasonal and weather factors, a case study from North Italy","authors":"Paolo Biella , Fausto Ramazzotti , Giulia Parolo , Andrea Galimberti , Massimo Labra , Mattia Brambilla","doi":"10.1016/j.agee.2024.109297","DOIUrl":"10.1016/j.agee.2024.109297","url":null,"abstract":"<div><p>Intensive, industrialized agriculture is considered a major driver of pollinator decline and viticulture may play a relevant role in this context. A global priority is to find ways to decrease the agricultural impact on biodiversity and to undertake an ecological intensification of farms, especially for maintaining pollinator biodiversity. To recommend practical ways to support pollinators, we explored if they react to the intensive vineyard production in a valley in Northern Italy: we tested if environmental, weather and management parameters could be responsible for shaping pollinator abundance, diversity and functional trait distribution across different wine farms, sampled with observation plots and transect walks. Results demonstrated both some effects shared across pollinator groups and some idiosyncratic responses. Generally, management factors including the herbaceous vegetation cover, weed height and its flower diversity showed strong and positive linear relationships with the abundance (+13 % by unit) and diversity of pollinators (+15 % by unit), while organic farming was associated with a slight decline in the abundance of the overall pollinators (-10 % by unit) and of hoverflies and butterflies. Regarding the temporal and weather factors, pollinators decreased with wind intensity and seasonal progression, while a positive effect was found for intermediate values of air temperature and sampling hour, thus affecting insect activity. The community composition analysis showed that environmental and management factors translated in specific distributions of bee and hoverfly functional traits across sites. Farming practices allowing herbaceous cover, weed height and flower diversity are overwhelmingly important for pollinators to assure shelter and nutritional resources and should be systematically incorporated to mitigate vineyard impact. Furthermore, measures that support pollinators should also consider pollinator phenological dynamics associated with temporal and environmental parameters to accordingly modulate the time of agricultural treatment application. Overall, our study provides a knowledge basis for the development of pollinator-friendly vineyard practices to foster the ecological value of farms.</p></div>","PeriodicalId":7512,"journal":{"name":"Agriculture, Ecosystems & Environment","volume":"378 ","pages":"Article 109297"},"PeriodicalIF":6.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167880924004158/pdfft?md5=f0c2bcdf04838e9a6704f163d3e8fbf3&pid=1-s2.0-S0167880924004158-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuhei Nakayama , Shawn Arreguin , Patricia Leon , Michael Douglass , Talon Becker , Andrew J. Margenot
{"title":"Nitrogen losses under soybean production are mitigated by substituting ammonium phosphates with triple superphosphate but non-fertilizer losses remain appreciable","authors":"Yuhei Nakayama , Shawn Arreguin , Patricia Leon , Michael Douglass , Talon Becker , Andrew J. Margenot","doi":"10.1016/j.agee.2024.109274","DOIUrl":"10.1016/j.agee.2024.109274","url":null,"abstract":"<div><p>Intensive agriculture in the Upper Mississippi River Basin contributes nitrogen and phosphorus loads to the Gulf of Mexico. Increases in nitrogen and phosphorus loads from basin states such as Illinois despite an increasing implementation of best management practices suggest overlooked sources of nutrient losses. Nitrogen co-applied with phosphorus fertilizer as monoammonium and diammonium phosphates is one such overlooked loss source. We conducted field experiments on Mollisols and Alfisols, two dominant soil types in Illinois and the greater Upper Mississippi River Basin, to quantify hypothesized losses of nitrogen from ammonium phosphate fertilizers. The inorganic nitrogen and phosphate leaching loss potential of mono- and diammonium phosphates compared to nitrogen-free triple superphosphate were evaluated under representative soybean production systems at two application rates and three timing-placement combinations, for two years at two sites. Though high non-fertilizer nitrate leaching loads generally outstripped the effect of nitrogen co-applied with monoammonium and diammonium phosphates, off-season nitrate leaching loads relative to triple superphosphate were greater for monoammonium phosphate by +30.0 kg NO<sub>3</sub>-N ha<sup>-1</sup> and for diammonium phosphate by +49.9 kg NO<sub>3</sub>-N ha<sup>-1</sup> in the first year under fall application on Mollisols, supporting the hypothesized water quality co-benefit of using triple superphosphate instead of ammonium phosphates as a phosphorus source. Additionally, relatively high non-fertilizer nitrate leaching loads regardless of fertilization point to the high nitrogen loss potential of soybean production, likely driven by mineralization of nitrogen-rich soybean residues following harvest. Our results suggest that targeting non-fertilizer nitrate leaching by cover cropping, and secondarily eliminating nitrogen co-applied with monoammonium and diammonium phosphate fertilizers by switching to triple superphosphate, could substantially mitigate nitrogen loading to surface waters in this region.</p></div>","PeriodicalId":7512,"journal":{"name":"Agriculture, Ecosystems & Environment","volume":"378 ","pages":"Article 109274"},"PeriodicalIF":6.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016788092400392X/pdfft?md5=807d0d06447a823c3d359a744e0b9929&pid=1-s2.0-S016788092400392X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Weiling Niu , Jingyi Ding , Bojie Fu , Wenwu Zhao , David Eldridge
{"title":"Global effects of livestock grazing on ecosystem functions vary with grazing management and environment","authors":"Weiling Niu , Jingyi Ding , Bojie Fu , Wenwu Zhao , David Eldridge","doi":"10.1016/j.agee.2024.109296","DOIUrl":"10.1016/j.agee.2024.109296","url":null,"abstract":"<div><p>Grasslands support multiple ecosystem functions and services, and diverse biota, and are critical for human well-being. Grazing is the most pervasive land use in grasslands, but can have damaging effects when poorly managed. How grazing management and the environment interact to affect ecosystem functions globally is less well understood. Addressing this knowledge gap is important if we are to evaluate where (climate region, soil texture, and grassland type), what (livestock type), and how (grazing intensity, grazing regime, and duration) grazing might minimize grassland degradation and sustain healthy grassland functions. We used a systematic meta-analysis to explore the effects of grazing on ecosystem functions (primary production, carbon sequestration, water conservation, nutrient cycle, and decomposition) based on 3917 paired data from 148 studies across the globe. We found that grazing substantially reduced plant productivity (-26 %), followed by water conservation (-18 %) and carbon sequestration (-19 %). The value of most ecosystem functions declined with increasing grazing intensity, and more pronounced negative effects of grazing with mixed-herbivore than single species grazing. Grazing impacts also varied with environmental conditions, with light grazing increasing carbon sequestration in arid regions, but reducing it in semi-arid regions. Further, increasing aridity indirectly weakened the positive impacts of light grazing on ecosystem functions by suppressing grazing effects. Our study suggests that the interactions between grazing management and environmental conditions are critical when assessing the effects of grazing on grassland functions, and this will likely be more important as climates become hotter and drier.</p></div>","PeriodicalId":7512,"journal":{"name":"Agriculture, Ecosystems & Environment","volume":"378 ","pages":"Article 109296"},"PeriodicalIF":6.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142229188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}