Anne-Flore Didelot , Emilie Jardé , Thierry Morvan , Charlotte Lemoine , Florian Gaillard , Gaëlle Hamelin , Anne Jaffrezic
{"title":"Disentangling the effects of applying pig slurry or its digestate to winter wheat or a catch crop on dissolved C fluxes","authors":"Anne-Flore Didelot , Emilie Jardé , Thierry Morvan , Charlotte Lemoine , Florian Gaillard , Gaëlle Hamelin , Anne Jaffrezic","doi":"10.1016/j.agee.2024.109285","DOIUrl":"10.1016/j.agee.2024.109285","url":null,"abstract":"<div><p>The anaerobic digestion industry, which is still developing, generates biogas from organic waste products. A co-product of this process, digestate, is increasingly produced and can be recycled on agricultural land as an alternative to mineral fertilizers. Biogas digestate is a recent product whose chemical composition differs from that of its source material, and additional data still need to be acquired on its effects on dissolved carbon fluxes. The objectives of this study were to assess (i) the effects of applying biogas digestate on dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) fluxes with different winter crops, (ii) the dynamics of DOC and DIC concentrations during the drainage season, and (iii) the annual dynamics of DOC and DIC fluxes along the soil profile. The study examined effects of applying biogas digestate, pig slurry, or a mineral fertilizer to winter wheat and two catch crops (mustard and a multispecies crop) on DOC and DIC fluxes in the soil. Lysimeters at 40 cm (topsoil) and 90 cm (subsoil) depths were monitored from 2014 to 2023, from November to March (i.e., 9 winter drainage seasons). During the drainage season, the DOC concentration was highest with digestate, and its timing depended on development of the cover crop: from the beginning of the drainage season for mustard and the multispecies crop and around February for wheat. Applying digestate increased the topsoil DOC fluxes (mean of 35.7 ± 13.7 kg.ha<sup>−1</sup> with digestate vs. 21.0 ± 6.7 kg.ha<sup>−1</sup> with the other treatments), particularly under mustard. Topsoil DIC fluxes were highest with pig slurry due to higher mineralization than that with digestate (mean of 59.1 ± 22.8 kg.ha<sup>−1</sup> with pig slurry vs. 46.2 ± 16.3 kg.ha<sup>−1</sup> with the other treatments). In the subsoil, DOC fluxes were low (6.2 ± 4.1 kg.ha<sup>−1</sup>) and DIC fluxes were high (80.0 ± 45.7 kg.ha<sup>−1</sup>), with no difference among treatments.</p></div>","PeriodicalId":7512,"journal":{"name":"Agriculture, Ecosystems & Environment","volume":"378 ","pages":"Article 109285"},"PeriodicalIF":6.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167880924004031/pdfft?md5=64f1e020fefe58f20426ead0f5664188&pid=1-s2.0-S0167880924004031-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yujie Liang , Rong Fu , Ahejiang Sailike , Hongjian Hao , Zhouchang Yu , Rong Wang , Ning Peng , Shicai Li , Wei Zhang , Yangyang Liu
{"title":"Soil labile organic carbon and nitrate nitrogen are the main factors driving carbon-fixing pathways during vegetation restoration in the Loess Plateau, China","authors":"Yujie Liang , Rong Fu , Ahejiang Sailike , Hongjian Hao , Zhouchang Yu , Rong Wang , Ning Peng , Shicai Li , Wei Zhang , Yangyang Liu","doi":"10.1016/j.agee.2024.109283","DOIUrl":"10.1016/j.agee.2024.109283","url":null,"abstract":"<div><p>Although the microbial fixation of CO<sub>2</sub> is a key process in regulating soil carbon cycling, the effects of vegetation type on microbial carbon-fixing pathways and their driving factors in soils have yet to be sufficiently established. In this study, based on macro-genome sequencing and other analytical methods, we sought to determine the soil physicochemical properties, soil organic carbon contents, carbon-fixing microorganisms, and carbon-fixing genes in areas of farmland (FL), grassland (GL). <em>Robinia pseudoacacia</em> (RP), <em>Caragana korshinskii</em> (CAK), and <em>Prunus sibirica</em> (PS) in the Wuliwan watershed of the Loess Plateau region of China. Our findings revealed that the organic carbon contents of the assessed soils increased in the following order: FL < GL∼PS < CAK < RP (<em>P</em> < 0.05). Re-vegetation-based restoration was found to enhance soil organic carbon pool stability. Compared with farmland soil, the proportions of recalcitrant organic carbon had increased by 6 % and 9 % in the soil at sites that had undergone restoration with <em>C. korshinskii</em> and <em>R. pseudoacacia</em> respectively. Among the identified carbon fixation pathways, the DC/4-HB cycle had the highest relative abundance of 25.10–25.52 %. The dominant groups of carbon-fixing microorganisms were identified as <em>Actinobacteria</em> and <em>Proteobacteria</em>, accounting for over 60 % of the total abundance. Furthermore, analysis based on a partial least squares path model revealed labile organic carbon and soil nitrate nitrogen as the primary drivers of carbon fixation pathways. Collectively, our findings in this study provide evidence to indicate that restoration of vegetation on the Loess Plateau can contribute to increases in soil organic carbon content and stability and the abundance of carbon-fixing microorganisms, with <em>R. pseudoacacia</em> and <em>C. korshinskii</em> having the most significant effects in this regard. These findings have important implications for restorative vegetation carbon pool management and provide additional perspectives for understanding global carbon cycling.</p></div>","PeriodicalId":7512,"journal":{"name":"Agriculture, Ecosystems & Environment","volume":"378 ","pages":"Article 109283"},"PeriodicalIF":6.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stable pollinator communities in different white clover populations suggest potential win-win scenarios for crop yield and biodiversity","authors":"Marco Ferrante , Felix Kirsch , Catrin Westphal","doi":"10.1016/j.agee.2024.109295","DOIUrl":"10.1016/j.agee.2024.109295","url":null,"abstract":"<div><p>Compared to monocultures, intercropping systems offer many agronomic benefits, including higher yield stability. In this study, we assessed whether cropping systems that are beneficial for yield stability are also beneficial for pollinator communities and whether the effect is modulated by the landscape type. Using a replicated block design in one heterogeneous and one homogeneous agricultural landscape, we studied the pollinator communities in eight populations (i.e., genotypes) of white clover (<em>Trifolium repens</em>) grown as a monoculture or as a two-species mixture (together with perennial ryegrass, <em>Lolium perenne</em>) or three-species mixture (together with perennial ryegrass and chicory, <em>Cichorium intybus</em>). We recorded 1486 honey bees and 1254 wild pollinators belonging to 46 species. Bumble bees were the most abundant wild pollinators (49.6 %), followed by hover flies (23.4 %), and non-<em>Bombus</em> wild bees (21.5 %). Lepidoptera accounted for only 5.4 % of the wild pollinators. We found a higher species richness and abundance of wild pollinators in monocultures than in two-species mixtures, but white clover population did not influence pollinators. Moreover, species richness and abundance were also higher in the homogeneous landscape than in the heterogenous one. Most species were foraging on white clover. However, 18 species (39.1 %, n = 18/46) were recorded foraging on chicory and/or weeds, and ten of these wild pollinator species were never recorded on white clover. Our study highlights that diverse pollinator communities require both abundant floral resources and diverse plant communities, that their needs are not in conflict with the goal of achieving yield stability, and that the landscape type can modulate the effect of the cropping system. Moreover, the lack of pollinator preference for different white clover populations suggests that farmers can select mixtures that enhance yield stability without negatively affecting pollinator communities. Overall, these results highlight that intercropping systems comprising several plant species and plant genotypes can guarantee yield stability without compromising the pollinator community, showing that win-win situations for farmers and biodiversity are possible.</p></div>","PeriodicalId":7512,"journal":{"name":"Agriculture, Ecosystems & Environment","volume":"378 ","pages":"Article 109295"},"PeriodicalIF":6.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167880924004134/pdfft?md5=e3fc3e446ced64a12111ed2dd12931b5&pid=1-s2.0-S0167880924004134-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142164423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rakhwe Kama , JuXia He , Farhan Nabi , Maimouna Aidara , Bonoua Faye , Sekouna Diatta , Chongjian Ma , Huashou Li
{"title":"Crop rotation and green manure type enhance organic carbon fractions and reduce soil arsenic content","authors":"Rakhwe Kama , JuXia He , Farhan Nabi , Maimouna Aidara , Bonoua Faye , Sekouna Diatta , Chongjian Ma , Huashou Li","doi":"10.1016/j.agee.2024.109287","DOIUrl":"10.1016/j.agee.2024.109287","url":null,"abstract":"<div><p>Green manure incorporation has recently emerged as a promising strategy for mitigating heavy metals (HMs) contamination and enhancing soil quality. However, there are still many uncertainties regarding the effects of crop rotation and the type of incorporated green manure on soil organic carbon fractions and arsenic (As) mitigation in As-contaminated soil. Thus, a two-phase experiment was conducted to determine the effects of crop rotation and green manure type on the distribution of organic carbon fractions and As accumulation in soil and brown rice plants. It was found that green manure incorporation increases soil nutrient content with an increase in total carbon of 18.64 %, 18.10 %, and 19.83 % under BC-R, AS-R, and LP-R respectively, and enhances organic carbon fractions. Furthermore, soil As concentration was significantly decreased by green manure incorporation for 20.65 %, 20.02 % and 19.99 % under BC-R, AS-R and LP-R respectively while As concentration in brown rice various parts was under permissible limits. This study highlights the complex interactions between green manure-brown rice rotation and green manure incorporation on soil organic carbon fractions, and As content in soil and brown rice, and emphasizes further research to elucidate optimal cultivation strategies of continuous crop rotation and green manure incorporation for sustainable remediation of As-contaminated soils while ensuring food safety.</p></div>","PeriodicalId":7512,"journal":{"name":"Agriculture, Ecosystems & Environment","volume":"378 ","pages":"Article 109287"},"PeriodicalIF":6.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142164421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sacha Roudine , Anne Le Ralec , Sophie Bouvaine , Lucy Alford , Franck Duval , Christelle Buchard , Stéphanie Llopis , Romuald Cloteau , Romain Georges , Olivier Jambon , Joan van Baaren , Cécile Le Lann
{"title":"Flower strips in winter reduce barley yellow dwarf virus incidence in cereal crops","authors":"Sacha Roudine , Anne Le Ralec , Sophie Bouvaine , Lucy Alford , Franck Duval , Christelle Buchard , Stéphanie Llopis , Romuald Cloteau , Romain Georges , Olivier Jambon , Joan van Baaren , Cécile Le Lann","doi":"10.1016/j.agee.2024.109275","DOIUrl":"10.1016/j.agee.2024.109275","url":null,"abstract":"<div><p>Most studies that have explored the effect of biological control in maintaining pest populations at acceptable levels have focused on the ability of natural enemies to reduce pest abundances. The reduction in pest populations induced by natural enemies, however, is rarely studied in association with the incidence of viruses transmitted by pests, as well as its impact on crop damage and yield. Here, we performed large-scale winter field monitoring to assess the direct and indirect effects (via arthropod natural enemies) of flower strips along cereal crop margins, on (i) cereal aphid abundance, (ii) the incidence of barley yellow dwarf viruses (BYDVs) transmitted by aphids in autumn and winter, (iii) crop damage, and (iv) crop yield. In 28 cereal fields (over 2 years), we used a paired experimental design to compare a cereal field edge directly adjacent to a flower strip with an opposite (at least 50 m apart) cereal field edge adjacent to a grassy margin. Our results highlight that winter flower strips favoured the activity of ground arthropod predators in the adjacent cereal field but not aphid parasitism rate in winter. Parasitism rate only increased with the complexity of the surrounding landscape. Our results also showed that flower strips reduced both vector abundance and virus incidence in the adjacent cereal field in winter but did not affect virus symptom levels or yields. Damages were low and yield remained high in our study, which may encourage farmers to stop insecticides during the autumn-winter. This study provides a first example of how flower strips along field edges can decrease the incidence of a vector-borne virus in winter and could be used as a strategy to promote more sustainable agriculture.</p></div>","PeriodicalId":7512,"journal":{"name":"Agriculture, Ecosystems & Environment","volume":"378 ","pages":"Article 109275"},"PeriodicalIF":6.0,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tiantian Zhao , Kang Tian , Benle Liu , Wenyou Hu , Biao Huang , Yongcun Zhao
{"title":"Soil phosphorus cycling in greenhouse vegetable production system: New insights from phosphate oxygen isotope","authors":"Tiantian Zhao , Kang Tian , Benle Liu , Wenyou Hu , Biao Huang , Yongcun Zhao","doi":"10.1016/j.agee.2024.109286","DOIUrl":"10.1016/j.agee.2024.109286","url":null,"abstract":"<div><p>Phosphorus (P) accumulation in soils of the greenhouse vegetable production (GVP) system is common due to intensive fertilization. However, the mechanism of P cycling in soils containing high P concentrations is not clear. In order to clarify the P cycling in GVP, 10 topsoils (0<img>30 cm) and 10 subsoils (30<img>60 cm) were sampled under two types of greenhouses (solar greenhouse and plastic greenhouse) in Shouguang, a typical GVP region of China. The pools of soil inorganic P following Hedley sequential extraction, and the oxygen isotopic composition of NaHCO<sub>3</sub> extracted phosphate (<em>δ</em><sup>18</sup>O<sub>NaHCO<span>3</span>_Pi</sub>) and HCl extracted phosphate (<em>δ</em><sup>18</sup>O<sub>HCl_Pi</sub>) were measured. Results showed that P in GVP, particularly in the solar greenhouse soils, accumulated significantly both in topsoil and subsoil. The main inorganic P pool in GVP soils was the HCl extracted, accounting for 50.26 %<img>72.76 % in topsoil and 44.42 %<img>57.89 % in subsoil, respectively. Values of <em>δ</em><sup>18</sup>O<sub>NaHCO<span>3</span>_Pi</sub> in most topsoil samples were within the isotopic equilibrium range (13.63 ‰<img>17.14 ‰). Values of soil <em>δ</em><sup>18</sup>O<sub>HCl_Pi</sub> in GVP, significantly higher than that in open field (11.41 ‰ in topsoil and 10.27 ‰ in subsoil), indicated more intensive P biological cycling and more secondary minerals formation altered the original characteristics of <em>δ</em><sup>18</sup>O<sub>HCl_Pi</sub> in GVP soil. The significant positive correlation of <em>δ</em><sup>18</sup>O<sub>NaHCO<span>3</span>_Pi</sub> values between topsoil and subsoil implied that the labile P<sub>i</sub> in subsoil was mainly influenced by its corresponding topsoil. Partially labile P, without biological cycling after fertilization of the topsoil, quickly migrated to the subsoil causing the P accumulation in the subsoil. The higher values of <em>δ</em><sup>18</sup>O<sub>NaHCO<span>3</span>_Pi</sub> and <em>δ</em><sup>18</sup>O<sub>HCl_Pi</sub> in solar greenhouse than plastic greenhouse suggested higher degree of P biological cycling, which were determined by the nutrient status. Overall, the phosphate oxygen isotope technology provides a deeper understanding of soil P cycling in GVP.</p></div>","PeriodicalId":7512,"journal":{"name":"Agriculture, Ecosystems & Environment","volume":"378 ","pages":"Article 109286"},"PeriodicalIF":6.0,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Boheng Liu , Yongli Zhang , Xiaoyun Yi , Haitao Zheng , Kang Ni , Qingxu Ma , Yanjiang Cai , Lifeng Ma , Yuanzhi Shi , Xiangde Yang , Jianyun Ruan
{"title":"Partially replacing chemical fertilizer with manure improves soil quality and ecosystem multifunctionality in a tea plantation","authors":"Boheng Liu , Yongli Zhang , Xiaoyun Yi , Haitao Zheng , Kang Ni , Qingxu Ma , Yanjiang Cai , Lifeng Ma , Yuanzhi Shi , Xiangde Yang , Jianyun Ruan","doi":"10.1016/j.agee.2024.109284","DOIUrl":"10.1016/j.agee.2024.109284","url":null,"abstract":"<div><p>Substituting chemical fertilizer with organic alternatives has been proven to improve soil fertility and crop yield and mitigate adverse environmental effects. However, the impact of different organic materials, such as animal-sourced organic fertilizer (AOF) and plant-sourced organic fertilizer (POF), on soil quality index (SQI) and ecosystem multifunctionality (EMF) in perennial systems like tea plantations remains unclear. This study evaluated the impact of partially substituting (30 %) chemical fertilizer with AOF (SM, sheep manure; PM, pig manure; CM, cow manure) and POF (SC, soybean cake) on soil properties, enzyme activity, enzyme stoichiometry, SQI, and EMF in a tea plantation of China. Partial substitution with AOF improved soil pH, total C content, and β-1,4-glucosidase, β-1,4-N-acetylglucosaminidase, L-leucine aminopeptidase, and acid phosphatase activities. In contrast, chemical fertilizer alone (CF) and POF substitution reduced these parameters. Compared with the control, CF, and POF, AOF substitution treatments effectively alleviated soil microbial C limitation but increased N limitation. Additionally, all fertilizer treatments enhanced the SQI and EMF of the tea plantation. Among the organic treatments, partial substitution with AOF resulted in the maximum increase in SQI (60 %–134 %) and EMF (157 %–177 %) compared with no fertilization, while POF substitution resulted in a comparatively lower improvement (53 % in SQI and 50 % in EMF). Random forest modeling identified five soil variables and eight enzyme variables as key contributors to the differences in EMF under partial organic substitution. Partial least squares path modeling further revealed that the changes in enzyme properties and microbial metabolic limitations directly influenced EMF in these treatments. Thus, the study proves that partially substituting chemical fertilizers with organic fertilizers, especially composted manure, enhances the soil quality and ecosystem functionality of tea plantations. These findings provide a scientific basis for developing effective soil management strategies to improve crop production sustainably.</p></div>","PeriodicalId":7512,"journal":{"name":"Agriculture, Ecosystems & Environment","volume":"378 ","pages":"Article 109284"},"PeriodicalIF":6.0,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Junhui Li , Yidong Zou , Kun Yang , Yi Zhu , Qiyun Zhou , Lanjun Shao , Jia Gong , Shuguang Peng , Guangjue Peng , Tian Qin , Meijie Tian , Yunhe Tian , Yongjun Liu , Can Wang , Ruiwen Hu , Juan Li
{"title":"Well-developed root systems and a nitrogen-rich rhizosphere recruit key bacterial taxa to resist disease invasion of field crop","authors":"Junhui Li , Yidong Zou , Kun Yang , Yi Zhu , Qiyun Zhou , Lanjun Shao , Jia Gong , Shuguang Peng , Guangjue Peng , Tian Qin , Meijie Tian , Yunhe Tian , Yongjun Liu , Can Wang , Ruiwen Hu , Juan Li","doi":"10.1016/j.agee.2024.109279","DOIUrl":"10.1016/j.agee.2024.109279","url":null,"abstract":"<div><p>Crop rotation patterns have important effects on crop growth and disease occurrence, but there is a lack of understanding of how crop root systems and inter-root environments affect the bacterial communities involved in plant disease resistance under different crop rotation patterns. In this study, two crop rotation patterns, tobacco-rice (TR) and tobacco-maize (TM), were set up in a tobacco growing region of southern China, and the differences in soil bacterial communities and the mechanisms of their influence on the occurrence of tobacco diseases were investigated under the two rotation patterns. The results showed that the disease incidence rate of tobacco under TR crop rotation was low, only 4.92 %, while the incidence rate under TM crop rotation was as high as 34.44 %. The bacterial genera affecting the disease incidence of tobacco were identified through microbial network and correlation analysis, and a total of 12 genera were identified as significantly correlated with the disease incidence rate of tobacco in the soil layers of 0–10 cm and 10–20 cm. Of these, four genera (<em>Acidothermus</em>, <em>Chujaibacter</em>, <em>Rhodanobacter</em>, and <em>Nitrospira</em>) were significantly and negatively correlated with the incidence rate, and also more abundant in the bacterial community of TR. Soil nitrogen nutrients and pH were the main soil factors influencing the differences in bacterial communities between the two rotation patterns. Partial least squares path model (PLS-PM) analysis revealed that the key bacterial taxa directly influenced the disease incidence of tobacco in both the 0–10 cm and 10–20 cm soil layers. Interestingly, the key bacterial taxa were directly influenced by soil nutrients in the 0–10 cm soil layer and by the tobacco root system in the 10–20 cm soil layer. In summary, nitrogen-rich nutrients and well-developed plant root systems are conducive to shaping soil bacterial communities with disease-resistant properties, reducing the disease incidence of tobacco. This study also provides new research perspectives for sustainable agricultural development and crop disease control.</p></div>","PeriodicalId":7512,"journal":{"name":"Agriculture, Ecosystems & Environment","volume":"378 ","pages":"Article 109279"},"PeriodicalIF":6.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tong Yang , Xiaodan Wang , Mengjie Wang , Fengbo Li , Matti Barthel , Johan Six , Jinfei Feng , Fuping Fang
{"title":"Impact of rice-crab and rice-fish co-cultures on the methane emission and its transport in aquaculture ponds","authors":"Tong Yang , Xiaodan Wang , Mengjie Wang , Fengbo Li , Matti Barthel , Johan Six , Jinfei Feng , Fuping Fang","doi":"10.1016/j.agee.2024.109281","DOIUrl":"10.1016/j.agee.2024.109281","url":null,"abstract":"<div><p>Aquaculture ponds are as hotspots for methane (CH<sub>4</sub>) emissions of increased worldwide interest. However, management strategies and underlying mechanisms to mitigate CH<sub>4</sub> emissions from aquaculture ponds remain little explored. In this study, we constructed new rice-crab and rice-fish co-culture systems by planting rice in crab and fish ponds and conducted a 2-year field experiment to examine the effect of co-culture on CH<sub>4</sub> emissions and transport pathways. The results showed that compared with crab and fish monoculture, co-culturing with rice significantly reduced CH<sub>4</sub> emissions by 23.1 % and 23.7 % for crab and fish ponds over 2 years, respectively. Further analysis clarified that the mitigating effect of co-culturing with rice on CH<sub>4</sub> emissions resulted from the reduction of CH<sub>4</sub> ebullition from the stocking ditch, but not from the feeding platform. The effect of co-culturing with rice on CH<sub>4</sub> transport varied by functional areas. No significant effect of co-culture was found on diffusive CH<sub>4</sub> emission neither in the stocking ditch nor on the feeding platform. On the feeding platform, co-culture increased additional rice-mediated CH<sub>4</sub> emissions while it mitigated CH<sub>4</sub> ebullition under the combined effect of planting rice on CH<sub>4</sub> production and oxidation. In the stocking ditch, co-culture significantly reduced CH<sub>4</sub> ebullition by reducing sediment depth. Furthermore, co-culture obtained additional rice yields, leading to lower yield-scaled CH<sub>4</sub> and higher economic effects. These findings highlight that co-culturing with rice is a valuable solution for sustainable aquaculture development by reducing CH<sub>4</sub> emissions while increasing food production.</p></div>","PeriodicalId":7512,"journal":{"name":"Agriculture, Ecosystems & Environment","volume":"378 ","pages":"Article 109281"},"PeriodicalIF":6.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Body size mediates ground beetle dispersal from non-crop vegetation: Implications for conservation biocontrol","authors":"Tobyn Neame, Paul Galpern","doi":"10.1016/j.agee.2024.109270","DOIUrl":"10.1016/j.agee.2024.109270","url":null,"abstract":"<div><p>Intensifying agricultural landscapes by removing non-crop vegetation threatens ecosystem services like pest regulation. Non-crop areas may serve as overwintering habitat for natural enemy arthropods that disperse into and predate on insect pests in the adjacent field. However, managing this service requires greater understanding of the mechanisms driving this dispersal and the subsequent control of pests by arthropod predators. A functional trait framework, i.e., studying the traits of predators that influence their foraging behaviour and dispersal, supports generalization across cropping systems where conditions differ (e.g., which arthropod taxa are present). Predator body size, a trait known to influence both dispersal distance and prey consumption, is a plausible mechanism governing the supply and the effective delivery of pest control. We focused on ground beetles (Coleoptera: Carabidae), common insect predators found globally in agroecosystems. We measured 27,815 beetles collected in 20 crop fields from 180 sampling stations to examine how body size changes with distance from non-crop vegetation. We tested the effect of predator body size on foraging behaviour by exposing 77 <em>Pterostichus melanarius</em> ground beetles to different sizes of the model pest <em>Trichoplusia ni</em> (Lepidoptera: Noctuidae). The smallest six deciles of carabid body size increased in size with distance from non-crop vegetation, demonstrating that more smaller beetles are found closer to the field edge and that body size is a predator trait mediating the distance of dispersal. Larger <em>P. melanarius</em> show a trend towards predating larger prey than smaller prey, though we were unable to reject a null hypothesis of no effect (α=0.05; P=0.08). This affirms that body size is a plausible trait governing the effectiveness of pest control, and that size-based foraging behaviour requires in-field investigation. Our findings reinforce calls for more and better-protected non-crop vegetation areas in agroecosystems intended to control a diverse array of insect pests. Placing non-crop vegetation patches closer to crops (e.g., through restoration or reducing field size) is a critical lever for manipulating the body size distribution of predators in the crop, and subsequently may affect the prey that can be controlled without the use of pesticides.</p></div>","PeriodicalId":7512,"journal":{"name":"Agriculture, Ecosystems & Environment","volume":"377 ","pages":"Article 109270"},"PeriodicalIF":6.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167880924003888/pdfft?md5=976f51479222ee5307d186aebc701eec&pid=1-s2.0-S0167880924003888-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142128915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}