Rabie Fath Allah, Hanae Ouaddari, Jesús Hernández-Saz, Imad El Fellah, Asmaa Fakih Lanjri, Daniel Goma Jiménez, Jaouad Bensalah, Mohamed Ouzzine
{"title":"Activated carbon derived from palm date seeds as an adsorbent for methylene blue: kinetic and thermodynamic studies","authors":"Rabie Fath Allah, Hanae Ouaddari, Jesús Hernández-Saz, Imad El Fellah, Asmaa Fakih Lanjri, Daniel Goma Jiménez, Jaouad Bensalah, Mohamed Ouzzine","doi":"10.1007/s11144-024-02710-1","DOIUrl":"10.1007/s11144-024-02710-1","url":null,"abstract":"<div><p>The present work shed light on the investigation of the textural and compositional properties of Activated Carbons derived from palm Date Seeds (DSAC). Initially, DS were pyrolyzed and chemically activated using H<sub>3</sub>PO<sub>4</sub> activating agent at different ratio/temperatures. In that sense, various techniques were performed, particularly, Fourier-transform infrared (FTIR) spectroscopy, thermogravimetry–differential thermal analysis (TGA/DTG), Brunauer–Emmett–Teller (BET) surface area analysis and energy dispersive spectroscopy (EDS) coupled to scanning electron microscopy (SEM). Our outcomes showed that the activation with H<sub>3</sub>PO<sub>4</sub> at lower and higher ratio produced activated carbons with higher pore volume (0.507 and 0.680 cm<sup>3</sup>/g), narrower average pore diameter (1.10 and 1.49 nm) and higher surface areas (917.082 and 828.60 m<sup>2</sup>/g). DSAC were used for the adsorption of methylene blue (MB) dye from an aqueous solution. The adsorption efficiency of the studied samples was investigated varying the amount of activated carbon, contact time, temperature and initial dye concentration. Acid-activated samples showed improved adsorption capacity for MB compared to pyrolyzed ones: up to 302 mg/g. This was mainly attributed to a more adequate texture as confirmed by the presence of a pronounced porosity in the SEM analyses. The adsorption equilibria were analyzed; the Langmuir isotherm revealed the best correlation with the experimental data, and the pseudo-second-order kinetic model was the most suitable for the adsorption of MB dye. The thermodynamic parameters revealed the spontaneity and endothermicity nature of the MB adsorption process. According to the obtained results our synthesized added-value product can be used to remove dyes contained in industrial effluent.</p></div>","PeriodicalId":750,"journal":{"name":"Reaction Kinetics, Mechanisms and Catalysis","volume":"137 6","pages":"3343 - 3364"},"PeriodicalIF":1.7,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficient ceria-manganese oxide for the direct conversion of CO2 and methanol to dimethyl carbonate","authors":"Yue Yu, Xiaolu Chen, Ping He, Zhiwen Xu, Xiao Wu, Hong Chen, Songlin Yang, Jia Yu, Shuang Gao","doi":"10.1007/s11144-024-02722-x","DOIUrl":"10.1007/s11144-024-02722-x","url":null,"abstract":"<div><p>A number of Ce<sub>1-x</sub>Mn<sub>x</sub> catalysts with different Mn contents were prepared by resol-assisted cationic coordinative co-assembly approach and used for the synthesis of dimethyl carbonate (DMC) from CO<sub>2</sub> and methanol. Multiple characterizations of XRD, FT-IR, TEM, BET, CO<sub>2</sub>-TPD, NH<sub>3</sub>-TPD, H<sub>2</sub>-TPR, XPS analyses were applied to investigate the surface properties of the Ce<sub>1-x</sub>Mn<sub>x</sub> catalysts. It turned out that adjusting the proper concentration of Mn ions not only increased the pore volumes, but also improved the content of medium acidic and medium basic sites. When a small amount of Mn was added, the presence of Mn<sup>2+</sup> on the catalyst surface enhanced, facilitating the conversion of Ce<sup>4+</sup> to Ce<sup>3+</sup>, and leading to higher oxygen vacancy concentration. Consequently, the adsorption and activation of CO<sub>2</sub> and methanol were promoted, and the catalytic efficiency of the reaction was improved. It was found that Ce<sub>0.95</sub>Mn<sub>0.05</sub> catalyst exhibited the best catalytic activity, achieving a high DMC yield of 6.44 mmol/g (120 °C, 6.5 MPa, 4 h).</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":750,"journal":{"name":"Reaction Kinetics, Mechanisms and Catalysis","volume":"138 1","pages":"175 - 188"},"PeriodicalIF":1.7,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analytical solution to the simultaneous Michaelis-Menten and second-order kinetics problem","authors":"Alejandro Pérez Paz","doi":"10.1007/s11144-024-02703-0","DOIUrl":"10.1007/s11144-024-02703-0","url":null,"abstract":"<div><p>An analytic solution is presented for the simultaneous substrate elimination problem that combines Michaelis-Menten (MM) consumption with an irreversible homo-dimerization process. The implicit solution involves logarithm and inverse tangent functions and perfectly agrees with the numerical solution of the differential equation. A solution is also presented for the generalized dynamical problem that simultaneously combines MM kinetics with first and second-order processes. The exact expressions for the half-life and the area under the curve are also presented for these problems.</p></div>","PeriodicalId":750,"journal":{"name":"Reaction Kinetics, Mechanisms and Catalysis","volume":"137 5","pages":"2539 - 2560"},"PeriodicalIF":1.7,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Oxidation of hydrogen peroxide by tungstate ion: formation and decay of a long-lived intermediate","authors":"Joaquin F. Perez-Benito, Adria Salido-Pons","doi":"10.1007/s11144-024-02713-y","DOIUrl":"10.1007/s11144-024-02713-y","url":null,"abstract":"<div><p>The kinetics of the reaction between tungstate ion and hydrogen peroxide in aqueous medium containing phosphate ions has been followed spectrophotometrically at 225 nm. This wavelength led to two different kinds of absorbance-time plots, showing either an increasing-maximum-decreasing temporal pattern or a continuously decreasing one, depending on the medium pH. This allowed to carry out two independent kinetic studies, one at high pH (first reaction stage) concerning the formation of a long-lived intermediate, thought to be W(V), and the other at low pH (second reaction stage) concerning its decay. The kinetic tool chosen to obtain the quantitative information was that of the initial rate method. The results indicated that, whereas both reaction stages were of first order in hydrogen peroxide, the rate dependence on the concentration of tungstate ion differed for the two stages: an apparent kinetic order intermediary between 1 and 2 for the first stage, and a well-defined order 1 for the second stage. There was also a difference between the dependences of the initial rates of the two stages on the concentrations of phosphate ions (the rate of the first stage independent and that of the second decreasing) and of the background electrolyte KCl (for the first stage an increasing effect and for the second a decreasing one). Both stages showed catalysis by hydrogen, copper(II), zinc and manganese(II) ions, the latter three probably acting as superoxide radical scavengers. Although the activation energy of the first stage was unusually close to zero (1.0 ± 1.2 kJ mol<sup>−1</sup>), that of the second stage was considerably higher (28 ± 3 kJ mol<sup>−1</sup>). Finally, a mechanism coherent with the available experimental information, and where the solvent cage effect plays an important role, has been proposed for each reaction stage.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><img></picture></div></div></figure></div></div>","PeriodicalId":750,"journal":{"name":"Reaction Kinetics, Mechanisms and Catalysis","volume":"137 5","pages":"2561 - 2581"},"PeriodicalIF":1.7,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Yasar, Atif Mujtaba, Kinza Fatima, Maddiha Rubab, Muhammad Usman, Muhammad Jamil Khan, Devendra Pratap Rao, Raja Waleed Sajjad
{"title":"Synthesis, characterization, and photocatalytic activity of aluminum doped spinel ferrite nanoparticles for the photodegradation of Congo red","authors":"Muhammad Yasar, Atif Mujtaba, Kinza Fatima, Maddiha Rubab, Muhammad Usman, Muhammad Jamil Khan, Devendra Pratap Rao, Raja Waleed Sajjad","doi":"10.1007/s11144-024-02714-x","DOIUrl":"10.1007/s11144-024-02714-x","url":null,"abstract":"<div><p>In this study, the photocatalytic degradation of Congo red dye was investigated using aluminum-doped nickel cadmium manganese prepared from a sol–gel auto-combustion process and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM–EDX) for morphological and chemical studies. UV–Vis spectroscopic investigations were performed to explore the optical properties of the synthesised spinel ferrite. The results show that the particle size decreases, the surface area increases, and the band gap energy of ferrite nanoparticles decreases with aluminum doping, which is responsible for their enhanced photocatalytic activity under visible light irradiation. The photodegradation efficiency of the aluminum-doped catalyst was found to be remarkable, up to 99.54% for Congo red after 60 min as compared to undoped 56.78% in 60 min under normal conditions. At optimized conditions Congo red dye (10 ppm) was degraded by 100% in 30 min under pH 3, 40 °C, 100 mg/100 mL catalyst dosage, 200 W light intensity conditions. Superoxide radicals, together with hydroxyl radicals and holes, appear to be key species in the degradation mechanisms, as determined in previous studies. Therefore, the recycled catalyst showed excellent stability and reusability over five cycles of photocatalytic performance.</p></div>","PeriodicalId":750,"journal":{"name":"Reaction Kinetics, Mechanisms and Catalysis","volume":"137 6","pages":"3463 - 3485"},"PeriodicalIF":1.7,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rubén H. Olcay, Elia G. Palacios, Iván A. Reyes, Francisco Patiño, Martín Reyes, Miguel Pérez, Hernán Islas, Julio C. Juárez, Mizraim U. Flores
{"title":"Behavior of toxic elements in the thermal decomposition of industrial sodium jarosite: a kinetic analysis","authors":"Rubén H. Olcay, Elia G. Palacios, Iván A. Reyes, Francisco Patiño, Martín Reyes, Miguel Pérez, Hernán Islas, Julio C. Juárez, Mizraim U. Flores","doi":"10.1007/s11144-024-02709-8","DOIUrl":"10.1007/s11144-024-02709-8","url":null,"abstract":"<div><p>In this study, an analysis of the behavior at high temperatures of toxic metals (As, Pb, and Cd) present in industrial sodium jarosite was carried out. The chemical and structural characterization of industrial sodium jarosite was carried out. Different mineral species associated with jarosite were found, such as franklinite (13.7%), analcime (12.1), orthoclase (4.4%) and other minority phases (1.4%), which are present from processes prior to the precipitation of jarosite industry. The amount of toxic elements such as arsenic, lead and cadmium was quantified, and their behavior was studied at high temperatures from 100 °C to 1000 °C, in addition, a kinetic of thermal decomposition of industrial jarosite study was carried out and the apparent activation energy of each of the mass losses was determined. The first loss of mass has an apparent activation energy of 22.32 kJ mol<sup>−1</sup>, the second loss of 42.23 kJ mol<sup>−1</sup>, and the third of 46.31 kJ mol<sup>−1</sup>, losing a total of 36.10% of the total compound, and within the rest of mass (63.9%) as hematite and other toxic metals such as arsenic, lead, cadmium are found, which at 1000 °C are kept within the compound. The analysis carried out by DSC shows that there are 4 endothermic reactions and a very slight exothermic reaction. Endothermic reactions are due to the loss of water at low temperatures and the loss of sulfur at high temperatures, so the exothermic reaction is attributed to the oxidation of the metals present in jarosite. The results were corroborated by XPS, XRF, AAS, and XRD, where residues were analyzed after calcination at different temperatures and where it is shown that at 1000 °C such elements are present within the compound, so the building materials despite being subjected to sintering at high temperatures, retain these toxic elements.</p></div>","PeriodicalId":750,"journal":{"name":"Reaction Kinetics, Mechanisms and Catalysis","volume":"138 1","pages":"107 - 124"},"PeriodicalIF":1.7,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. M. Bahena, L. V. Castro, B. Alcántar-Vázquez, M. E. Manriquez, E. Albiter, E. Ortiz-Islas, R. Cabrera-Sierra
{"title":"Photocatalytic performance of ZnAl vs ZnAlTi in the degradation of 2,4-dichlorophenoxyacetic acid herbicide","authors":"G. M. Bahena, L. V. Castro, B. Alcántar-Vázquez, M. E. Manriquez, E. Albiter, E. Ortiz-Islas, R. Cabrera-Sierra","doi":"10.1007/s11144-024-02717-8","DOIUrl":"10.1007/s11144-024-02717-8","url":null,"abstract":"<div><p>This study focused on the synthesis and evaluation of mixed metal oxides ZnO/Al<sub>2</sub>O<sub>3</sub> and ZnO/Al<sub>2</sub>O<sub>3</sub>/TiO<sub>2</sub> as heterogeneous photocatalysts for the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D). Hydrotalcites were synthesized using three different methods (conventional, microwave, and ultrasonic) and then treated at 700 ºC to obtain the corresponding Zn/Al and Zn/Al/Ti mixed metal oxides. The layered double hydroxide (LDH) and the mixed metal oxides were characterized by various techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectrometry (XPS), N<sub>2</sub> adsorption–desorption, Fourier transform infrared spectroscopy (FTIR), pH<sub>PZC</sub> analysis and UV–Vis techniques. A 95.6% photodegradation of 2,4-D was achieved after 240 min of UV exposure radiation (λ = 254 nm). The degradation of the products was confirmed by mass spectrometry analysis. The activity of the samples under UV irradiation followed this order: OZnTU > OZnTC > OZnTM, with ZnO/Al<sub>2</sub>O<sub>3</sub>/TiO<sub>2</sub> showing the highest activity due to its chemical composition and the interaction between ZnO and TiO<sub>2</sub>. The degradation process was described by a Langmuir–Hinshelwood type kinetic model. Mass spectrometry was used to analyze the photodegradation results, suggesting the potential of these photocatalysts for the oxidation of 2,4-D in industrial wastewater under UV irradiation, particularly for the degradation and mineralization of 2,4-D herbicides from an aqueous solution.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":750,"journal":{"name":"Reaction Kinetics, Mechanisms and Catalysis","volume":"138 1","pages":"569 - 586"},"PeriodicalIF":1.7,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fouling reduction and flux enhancement of visible light driven nitrogen doped titanium dioxide-polyvinyl difluoride photocatalytic membrane: modelling and optimization of multiple variables","authors":"Kipchumba Nelson, Achisa C. Mecha, Anil Kumar","doi":"10.1007/s11144-024-02711-0","DOIUrl":"10.1007/s11144-024-02711-0","url":null,"abstract":"<div><p>In this study, the performance of nitrogen-doped titanium dioxide polyvinylidene difluoride photocatalytic membrane (N-TiO<sub>2</sub>-PVDF) in water treatment was assessed. The effect of solution pH (4–10) and salt (NaCl) concentration (7–40 g/l) on the permeate flux was investigated for disinfection of water containing <i>E. coli</i>. Modelling and optimization were done using response surface methodology (RSM) based on central composite design (CCD). Flux was modelled with a quadratic polynomial. The Analysis of Variance had a high predicted R<sup>2</sup> of 0.83, with less than 0.2 difference with adjusted R<sup>2</sup> indicating adequate response variation with a coefficient of variance (CV%) of 3.27%. The coefficient of variance (CV%) in the model did not exceed 10% indicating adequate variation and reliability in the response. The model had an optimum flux value of 5.3 ml/7cmD/min at pH 7 and 7 g/l NaCl concentration. The N-TiO<sub>2</sub>-PVDF membranes were hydrophilic resulting in an 80% higher mean flux than the PVDF membrane. This was attributed to antifouling properties resulting from the photocatalytic activity of N-TiO<sub>2</sub> nanoparticles. The solar-based N-TiO<sub>2</sub>-PVDF membrane effectively disinfected water containing <i>E. coli</i>, with no bacterial regrowth, enhanced flux and reduced fouling.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":750,"journal":{"name":"Reaction Kinetics, Mechanisms and Catalysis","volume":"138 1","pages":"587 - 602"},"PeriodicalIF":1.7,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nurul Amanina A. Suhaimi, Nur Nabaahah Roslan, Nur Batrisyia Amirul, Harry Lik Hock Lau, Alessandra Anne Hasman, Muhammad Nur, Jun Wei Lim, Anwar Usman
{"title":"Unraveling the photocatalytic degradation kinetics and efficiency of methylene blue, rhodamine B, and auramine O in their ternary mixture: diffusion and conformational insights","authors":"Nurul Amanina A. Suhaimi, Nur Nabaahah Roslan, Nur Batrisyia Amirul, Harry Lik Hock Lau, Alessandra Anne Hasman, Muhammad Nur, Jun Wei Lim, Anwar Usman","doi":"10.1007/s11144-024-02712-z","DOIUrl":"10.1007/s11144-024-02712-z","url":null,"abstract":"<div><p>Heterogeneous photocatalytic degradation behavior of cationic methylene blue (MB), rhodamine B (RhB), and auramine O (AO) dyes in their ternary aqueous solution, as a model of multicomponent mixture closely imitating a real wastewater, was investigated in great detail. In this study, 100 nm anatase TiO<sub>2</sub> nanoparticles irradiated using 365 nm light were utilized to generate reactive oxygen species capable of oxidizing and degrading unselectively the dyes into small fragments of organic compounds. The underlying kinetics and mechanism of photocatalytic degradation of the dyes were elucidated based on the Langmuir–Hinshelwood kinetic, Weber–Morris intraparticle diffusion, and Smoluchowski diffusion-limited reaction models. The simultaneous photocatalytic degradation of the dyes in their ternary mixture at different irradiation times, catalyst dosages, initial concentrations, pHs of medium, and molarity ratios clearly suggested the dominance of MB in the photocatalytic degradation process due to its faster diffusion over RhB and AO. Increasing temperature or adding a small amount of hydrogen peroxide further highlighted the advantage of MB in the photocatalytic degradation. Overall results revealed a general concept that the molecular structure, especially planarity and electron donating power of attached groups, plays an important role in controlling diffusion dynamics, immobilization, and efficiency of photocatalytic degradation of dyes in multicomponent wastewater.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":750,"journal":{"name":"Reaction Kinetics, Mechanisms and Catalysis","volume":"137 6","pages":"3441 - 3462"},"PeriodicalIF":1.7,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amina Aichour, Hakim Djafer Khodja, Dounia Benaidja, Youcef Islam Touahria, Hassina Zaghouane-Boudiaf, Cesar Viseras Iborra
{"title":"Sustainable remediation of a cationic dye in aqueous solutions using modified palm petiole as a highly efficient and reusable adsorbent","authors":"Amina Aichour, Hakim Djafer Khodja, Dounia Benaidja, Youcef Islam Touahria, Hassina Zaghouane-Boudiaf, Cesar Viseras Iborra","doi":"10.1007/s11144-024-02708-9","DOIUrl":"10.1007/s11144-024-02708-9","url":null,"abstract":"<div><p>This study adopted acid treatment of palm petioles for preparing (APP), which reached notably the whole removal ratio of 99% (60 min) of methylene blue (150 mg/L) and can still maintain good performance after 5 cycles. The adsorbents were analyzed using SEM, FTIR, pH<sub>PZC</sub>, and SSA estimation by methylene blue adsorption. The modification of the rough palm petiole with phosphoric acid enables the APP to enhance the intensity of MB adsorption from wastewater. With high R<sup>2</sup> and the lowest RMSE, the pseudo-second-order model is the most suitable model that describes MB adsorption on APP. There is an intraparticle diffusion, which occurs with the pseudo-second-order. pH has a great effect on MB removal. MB adsorption process was found to be spontaneous and the exothermic. Langmuir model gives very satisfactory results with value of correlation coefficient > 0.93, and the lowest values of RMSE, and saturated monolayers with values of quantities adsorbed close to experimental values. The progressive elimination percentages of the MB on APP were from 95.03% to 41.87% from the first cycle to the fifth cycle of adsorption–desorption. Obtained results have shown that APP is a very promoting adsorbent in the field of wastewater treatment.</p></div>","PeriodicalId":750,"journal":{"name":"Reaction Kinetics, Mechanisms and Catalysis","volume":"137 6","pages":"3321 - 3341"},"PeriodicalIF":1.7,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}