Cu-Ni纳米颗粒通过插层封盖:在对硝基苯酚还原的特殊效率

IF 1.7 4区 化学 Q4 CHEMISTRY, PHYSICAL
Aayasha Negi, Mohamed Taha Yassin, Minakshi Pandey, Fatimah O. Al-Otibi, Khalid Maniah, Pragya Pali
{"title":"Cu-Ni纳米颗粒通过插层封盖:在对硝基苯酚还原的特殊效率","authors":"Aayasha Negi,&nbsp;Mohamed Taha Yassin,&nbsp;Minakshi Pandey,&nbsp;Fatimah O. Al-Otibi,&nbsp;Khalid Maniah,&nbsp;Pragya Pali","doi":"10.1007/s11144-024-02756-1","DOIUrl":null,"url":null,"abstract":"<div><p>This research explores the synthesis of Cu–Ni bimetallic nanoparticles (NPs) via KC<sub>8</sub>-driven reduction method at various refluxing time and aiming to evaluate their catalytic efficiency in the reduction of p-nitrophenol (p-NP) to p-aminophenol (p-AP). The incorporation of Ni into the Cu matrix has been critical in influencing the thermal, morphological, catalytic, and kinetic properties of the NPs. The bimetallic NPs were characterized using a suite of analytical techniques X-ray diffraction (XRD), selected area electron diffraction (SAED)-transmission electron microscopy, thermogravimetric analysis, scanning electron microscopy, Fourier transform infrared spectroscopy and Brunauer–Emmett–Teller (BET). XRD revealed a crystallite size of 10.3 nm while structural and surface analyses confirmed the formation of uniformly dispersed NPs ranging 15–25 nm in size, a specific surface area of 280.82 m<sup>2</sup> g<sup>−1</sup>, and a pore volume of 0.231 cc g<sup>−1</sup>. Our findings revealed that Cu–Ni NPs subjected to a 30-min reflux exhibited a significantly enhanced catalytic activity with a rate constant of 0.112 ± 0.02 s⁻<sup>1</sup>. Further optimization of the refluxing time highlights a critical window for maximizing catalytic efficiency. Intercalated KC<sub>8</sub>-reduced Cu–Ni NPs have shown promising electrochemical performance, especially as anode materials for lithium-ion batteries. However, this research emphasizes the critical role of optimizing refluxing time to maximize catalytic efficiency, providing important insights into the design of advanced catalysts for environmental remediation and chemical synthesis applications.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":750,"journal":{"name":"Reaction Kinetics, Mechanisms and Catalysis","volume":"138 2","pages":"859 - 872"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cu–Ni nanoparticles via intercalated capping: exceptional efficiency in para-nitrophenol reduction\",\"authors\":\"Aayasha Negi,&nbsp;Mohamed Taha Yassin,&nbsp;Minakshi Pandey,&nbsp;Fatimah O. Al-Otibi,&nbsp;Khalid Maniah,&nbsp;Pragya Pali\",\"doi\":\"10.1007/s11144-024-02756-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research explores the synthesis of Cu–Ni bimetallic nanoparticles (NPs) via KC<sub>8</sub>-driven reduction method at various refluxing time and aiming to evaluate their catalytic efficiency in the reduction of p-nitrophenol (p-NP) to p-aminophenol (p-AP). The incorporation of Ni into the Cu matrix has been critical in influencing the thermal, morphological, catalytic, and kinetic properties of the NPs. The bimetallic NPs were characterized using a suite of analytical techniques X-ray diffraction (XRD), selected area electron diffraction (SAED)-transmission electron microscopy, thermogravimetric analysis, scanning electron microscopy, Fourier transform infrared spectroscopy and Brunauer–Emmett–Teller (BET). XRD revealed a crystallite size of 10.3 nm while structural and surface analyses confirmed the formation of uniformly dispersed NPs ranging 15–25 nm in size, a specific surface area of 280.82 m<sup>2</sup> g<sup>−1</sup>, and a pore volume of 0.231 cc g<sup>−1</sup>. Our findings revealed that Cu–Ni NPs subjected to a 30-min reflux exhibited a significantly enhanced catalytic activity with a rate constant of 0.112 ± 0.02 s⁻<sup>1</sup>. Further optimization of the refluxing time highlights a critical window for maximizing catalytic efficiency. Intercalated KC<sub>8</sub>-reduced Cu–Ni NPs have shown promising electrochemical performance, especially as anode materials for lithium-ion batteries. However, this research emphasizes the critical role of optimizing refluxing time to maximize catalytic efficiency, providing important insights into the design of advanced catalysts for environmental remediation and chemical synthesis applications.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":750,\"journal\":{\"name\":\"Reaction Kinetics, Mechanisms and Catalysis\",\"volume\":\"138 2\",\"pages\":\"859 - 872\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reaction Kinetics, Mechanisms and Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11144-024-02756-1\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Kinetics, Mechanisms and Catalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11144-024-02756-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用kc8驱动还原法在不同回流时间下合成Cu-Ni双金属纳米颗粒(NPs),并评价其催化将对硝基苯酚(p-NP)还原为对氨基苯酚(p-AP)的效率。Ni在Cu基体中的掺入是影响NPs的热、形态、催化和动力学性质的关键因素。采用x射线衍射(XRD)、选择区域电子衍射(SAED)、透射电镜、热重分析、扫描电镜、傅里叶变换红外光谱和布鲁诺尔-埃米特-泰勒(BET)等分析技术对双金属NPs进行了表征。XRD分析显示,纳米颗粒的晶粒尺寸为10.3 nm,结构和表面分析证实,纳米颗粒的粒径为15 ~ 25 nm,比表面积为280.82 m2 g−1,孔体积为0.231 cc g−1。我们的研究结果显示,经过30分钟回流的Cu-Ni NPs表现出显著增强的催化活性,其速率常数为0.112±0.02 s毒血症。回流时间的进一步优化突出了催化效率最大化的关键窗口。插层kc8还原Cu-Ni NPs具有良好的电化学性能,特别是作为锂离子电池的负极材料。然而,本研究强调了优化回流时间以最大化催化效率的关键作用,为设计用于环境修复和化学合成应用的高级催化剂提供了重要见解。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cu–Ni nanoparticles via intercalated capping: exceptional efficiency in para-nitrophenol reduction

Cu–Ni nanoparticles via intercalated capping: exceptional efficiency in para-nitrophenol reduction

This research explores the synthesis of Cu–Ni bimetallic nanoparticles (NPs) via KC8-driven reduction method at various refluxing time and aiming to evaluate their catalytic efficiency in the reduction of p-nitrophenol (p-NP) to p-aminophenol (p-AP). The incorporation of Ni into the Cu matrix has been critical in influencing the thermal, morphological, catalytic, and kinetic properties of the NPs. The bimetallic NPs were characterized using a suite of analytical techniques X-ray diffraction (XRD), selected area electron diffraction (SAED)-transmission electron microscopy, thermogravimetric analysis, scanning electron microscopy, Fourier transform infrared spectroscopy and Brunauer–Emmett–Teller (BET). XRD revealed a crystallite size of 10.3 nm while structural and surface analyses confirmed the formation of uniformly dispersed NPs ranging 15–25 nm in size, a specific surface area of 280.82 m2 g−1, and a pore volume of 0.231 cc g−1. Our findings revealed that Cu–Ni NPs subjected to a 30-min reflux exhibited a significantly enhanced catalytic activity with a rate constant of 0.112 ± 0.02 s⁻1. Further optimization of the refluxing time highlights a critical window for maximizing catalytic efficiency. Intercalated KC8-reduced Cu–Ni NPs have shown promising electrochemical performance, especially as anode materials for lithium-ion batteries. However, this research emphasizes the critical role of optimizing refluxing time to maximize catalytic efficiency, providing important insights into the design of advanced catalysts for environmental remediation and chemical synthesis applications.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
201
审稿时长
2.8 months
期刊介绍: Reaction Kinetics, Mechanisms and Catalysis is a medium for original contributions in the following fields: -kinetics of homogeneous reactions in gas, liquid and solid phase; -Homogeneous catalysis; -Heterogeneous catalysis; -Adsorption in heterogeneous catalysis; -Transport processes related to reaction kinetics and catalysis; -Preparation and study of catalysts; -Reactors and apparatus. Reaction Kinetics, Mechanisms and Catalysis was formerly published under the title Reaction Kinetics and Catalysis Letters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信