{"title":"Combining a tunable pinhole with synchronous fluorescence spectrometry for visualization and quantification of benzo[a]pyrene at the root epidermis microstructure of Kandelia obovata","authors":"Bingman Lei, Yaxian Zhu and Yong Zhang","doi":"10.1039/D4EM00443D","DOIUrl":"10.1039/D4EM00443D","url":null,"abstract":"<p >The adsorption of polycyclic aromatic hydrocarbons (PAHs) by mangrove roots and their transport to chloroplasts is a potentially critical process that reduces the carbon sequestration efficiency of mangroves. Yet the crucial initial step, the distribution and retention of PAHs at the root epidermis microstructure, remains unclear. A novel method with a spatial resolution of 311 nm was developed for visualizing and quantifying benzo[<em>a</em>]pyrene (B[<em>a</em>]P) at the root epidermis microstructure (0.096 mm<small><sup>2</sup></small>) of <em>Kandelia obovata</em> (<em>Ko</em>). This method combined a tunable pinhole in laser confocal scanning microscopy with synchronous fluorescence spectrometry to reduce the auto-fluorescence interference in locating B[<em>a</em>]P and improve quantitative sensitivity. The linear range for the established method was 0.44–50.00 ng mm<small><sup>−2</sup></small>, with a detection limit of 0.063 ng mm<small><sup>−2</sup></small> and a relative standard deviation of 9.45%. In a 60-day hydroponic experiment, B[<em>a</em>]P was primarily adsorbed along the epidermis cell walls of secondary lateral roots and lateral roots, with retained amounts of 0.65 ng mm<small><sup>−2</sup></small> and 0.49 ng mm<small><sup>−2</sup></small>, respectively. It was found to cluster and predominantly accumulate at the epidermal cell surfaces of taproots (0.24 ng mm<small><sup>−2</sup></small>). B[<em>a</em>]P might enter inner root tissues through the root epidermal cell walls and surfaces of <em>Ko</em>, with the cell walls potentially being the main route. This study potentially provides a pathway for visualizing and quantifying B[<em>a</em>]P entering inner root tissues of mangroves.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 10","pages":" 1879-1886"},"PeriodicalIF":4.3,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142197921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianing Zhang, Chong Wei, Yongming Han, Benjamin A. Musa Bandowe, Dewen Lei and Wolfgang Wilcke
{"title":"A 150 years record of polycyclic aromatic compounds in the Sihailongwan Maar Lake, Northeast China: impacts of socio-economic developments and pollution control†","authors":"Jianing Zhang, Chong Wei, Yongming Han, Benjamin A. Musa Bandowe, Dewen Lei and Wolfgang Wilcke","doi":"10.1039/D4EM00309H","DOIUrl":"10.1039/D4EM00309H","url":null,"abstract":"<p >The geochemical composition of sediment cores can serve as a proxy for reconstructing past human and nature-driven environmental and climatic changes. We investigated the temporal variation in the concentrations and fluxes of polycyclic aromatic compounds (PACs) which include polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs, and azaarenes in the Sihailongwan Maar Lake and found that they remained low before 1950. The PAC concentrations and fluxes increased substantially since 1950, which was in good agreement with the fast socio-economic development, industrialization, and associated growth in fossil fuel consumption in China, particularly since the 1980s. After 2010, the PAC fluxes decreased, which was consistent with the implementation of air pollution control policies in China at that time. The concentration ratios of the sums of low to high molecular weight PAHs (LMW-PAHs/HMW-PAHs), benzo[<em>e</em>]pyrene/benzo[<em>a</em>]pyrene, and benzo[<em>a</em>]anthracene-7,12-dione/benzo[<em>a</em>]anthracene all decreased from bottom to top of the sediment core, reflecting the rapidly increasing contribution of emissions derived from high-temperature fossil fuel combustion (energy, transport and industry) to the PAC emissions in recent times at the expense of biomass burning. In addition, these data reflect the increasing local sources of PACs in more recent times because of the enhanced human activities in the area surrounding the Maar lake. Our results demonstrate that PAC fluxes and concentrations in sediment cores reflect the regional and national economic development and the efficiency of pollution control measures.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 10","pages":" 1748-1759"},"PeriodicalIF":4.3,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142197922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Depletion rates of O2-naphthenic acids from oil sands process-affected water in wetland microcosms†","authors":"Alexander M. Cancelli and Frank A. P. C. Gobas","doi":"10.1039/D4EM00227J","DOIUrl":"10.1039/D4EM00227J","url":null,"abstract":"<p >Treatment wetland microcosms were constructed to evaluate the fate of O<small><sub>2</sub></small>-naphthenic acids in microcosm reactors containing OSPW only (<em>i.e.</em>, natural attenuation), OSPW with peat soil (sorption and microbial degradation), and cattail microcosm reactors (plant-mediated uptake and biotransformation). Depletion in OSPW occurs by mechanisms of natural attenuation, sorption and microbial degradation, and plant-mediated uptake and biotransformation. The average rate of depletion for O<small><sub>2</sub></small>-naphthenic acids was 0.005 (SD 0.010) per day in OSPW only, 0.029 (SD 0.013) per day in OSPW with peat soil, and 0.043 (SD 0.013) per day in cattail microcosm reactors. Slow rates of depletion from OSPW by natural attenuation highlight the need to develop effective remediation strategies for OSPW, and the increase in rates of depletion for cattail microcosm reactors highlights the importance of wetland vegetation in supporting naphthenic acid removal from OSPW. Reactors containing OSPW with peat soil showed the greatest increase in rates of O<small><sub>2</sub></small>-naphthenic acid depletion for lower molecular weight congeners compared to reactors with OSPW only. Cattail microcosm reactors showed the greatest increase in the rates of O<small><sub>2</sub></small>-naphthenic acid depletion for higher molecular weight congeners compared to reactors with OSPW and peat soil.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 10","pages":" 1859-1867"},"PeriodicalIF":4.3,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lixia Sun, Yunlong Zhang, Bo Wu, Enzhu Hu, Linlin Li, Longlong Qu and Shuqi Li
{"title":"Impact of particle size separation on the stabilisation efficiency of heavy-metal-contaminated soil: a meta-analysis†","authors":"Lixia Sun, Yunlong Zhang, Bo Wu, Enzhu Hu, Linlin Li, Longlong Qu and Shuqi Li","doi":"10.1039/D4EM00308J","DOIUrl":"10.1039/D4EM00308J","url":null,"abstract":"<p >The separation of heavy-metal-contaminated soil by particle size is crucial for minimising the volume of contaminated soil because of the pronounced variability in the heavy-metal distribution among different soil particle sizes. However, relevant analyses on the effect of soil particle size sorting on stabilisation are limited. Therefore, we screened 2766 peer-reviewed papers published from January 2010 to April 2022 in the Web of Science database, of which 117 met the screening requirements, and conducted a meta-analysis to explore how soil particle size sorting and the interaction between sorting particle size and soil properties affect the stabilisation of heavy metals. The results showed that: (1) For fractionations ≤0.15 mm and from 0.15–2 mm, the materials demonstrating the highest average unit stabilisation efficiency were phosphate (45.0%/%) and organic matter (59.5%/%), respectively. (2) The smaller the size of soil particles, the greater the effect of the initial pH on stabilisation efficiency. (3) Similarly, for soil organic matter, smaller particle sizes (≤0.15 mm) combined with a lower initial content (≤1%) significantly increased the heavy metal stabilisation efficiency. (4) The impact of soil particle size fractionation on unit stabilisation efficiency was observed to be similar for typical heavy metals, specifically Cd and Pb. The relationship between particle size and unit stabilisation efficiency shows an inverted U shape. Particle size sorting can affect the distribution of heavy metals, but the type of stabilisation agent should also be considered in combination with the soil properties and heavy metal types.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 10","pages":" 1821-1835"},"PeriodicalIF":4.3,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142102303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Review of in vitro studies evaluating respiratory toxicity of aerosols: impact of cell types, chemical composition, and atmospheric processing","authors":"Sudheer Salana and Vishal Verma","doi":"10.1039/D4EM00475B","DOIUrl":"10.1039/D4EM00475B","url":null,"abstract":"<p >In recent decades, several cell-based and acellular methods have been developed to evaluate ambient particulate matter (PM) toxicity. Although cell-based methods provide a more comprehensive assessment of PM toxicity, their results are difficult to comprehend due to the diversity in cellular endpoints, cell types, and assays and the interference of PM chemical components with some of the assays' techniques. In this review, we attempt to clarify some of these issues. We first discuss the morphological and immunological differences among various macrophage and epithelial cells, belonging to the respiratory systems of human and murine species, used in the <em>in vitro</em> studies evaluating PM toxicity. Then, we review the current state of knowledge on the role of different PM chemical components and the relevance of atmospheric processing and aging of aerosols in the respiratory toxicity of PM. Our review demonstrates the need to adopt more physiologically relevant cellular models such as epithelial (or endothelial) cells instead of macrophages for oxidative stress measurement. We suggest limiting macrophages for investigating other cellular responses (<em>e.g.</em>, phagocytosis, inflammation, and DNA damage). Unlike monocultures (of macrophages and epithelial cells), which are generally used to study the direct effects of PM on a given cell type, the use of co-culture systems should be encouraged to investigate a more comprehensive effect of PM in the presence of other cells. Our review has identified two major groups of toxic PM chemical species from the existing literature, <em>i.e.</em>, metals (Fe, Cu, Mn, Cr, Ni, and Zn) and organic compounds (PAHs, ketones, aliphatic and chlorinated hydrocarbons, and quinones). However, the relative toxicities of these species are still a matter of debate. Finally, the results of the existing studies investigating the effect of aging on PM toxicity are ambiguous, with varying results due to different cell types, different aging conditions, and the presence/absence of specific oxidants. More systematic studies are necessary to understand the role of different SOA precursors, interactions between different PM components, and aging conditions in the overall toxicity of PM. We anticipate that our review will guide future investigations by helping researchers choose appropriate cell models, resulting in a more meaningful interpretation of cell-based assays and thus ultimately leading to a better understanding of the health effects of PM exposure.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 11","pages":" 1922-1954"},"PeriodicalIF":4.3,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142197924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Jin, Qianwen Mo, Guihong Li, Gang Wang, Binqiang Zhu, Xing Wan, Peng Lin, Bin Huang, Xuejun Pan
{"title":"Localized Regional Environmental Risk in Mountainous Urban Areas of Southwest China: Identification, Assessment, and Management Strategies in Kunming","authors":"Wei Jin, Qianwen Mo, Guihong Li, Gang Wang, Binqiang Zhu, Xing Wan, Peng Lin, Bin Huang, Xuejun Pan","doi":"10.1039/d4em00449c","DOIUrl":"https://doi.org/10.1039/d4em00449c","url":null,"abstract":"In recent decades, the escalating frequency of environmental risk events, arising from sources such as industrial accidents, chemical spills, or other anthropogenic activities, has intensified threats to the ecological environment. The targeted identification of high-risk areas, formulation of control lists for key risk sources within regions, and the implementation of differentiated management strategies remain significant challenges. This study employs administrative region environmental risk assessment and gridded environmental risk analysis method to comprehensively evaluate environmental risks in the city of Kunming, China. The results indicated a fourfold increase in the number of environmental risk sources from 2012 to 2022. The sources were found to be widely distributed across the entire region but exhibiting localized clustering. Environmental risk receptors were primarily concentrated around a local lake, in densely populated counties, and near rivers and drinking water sources. Risk hotspot areas within the target region were identified using the gridded environmental risk analysis method. A list of 29 key control areas was proposed taking in 9 industrial parks and 20 streets. Measures were proposed for handling unexpected incidents. The findings provide data useful for policy formulation and environmental management in similar regions of mountainous cities.","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":"11 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142197925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wang Li, Bo zu, Lei Li, Jian Li, Jiawen Li and Qiujie Xiang
{"title":"Microplastics are effective carriers of bisphenol A and facilitate its escape from wastewater treatment systems","authors":"Wang Li, Bo zu, Lei Li, Jian Li, Jiawen Li and Qiujie Xiang","doi":"10.1039/D4EM00297K","DOIUrl":"10.1039/D4EM00297K","url":null,"abstract":"<p >Microplastics (MPs) pollution is a major issue in aquatic environments. Wastewater treatment plants are significant point sources of MPs, which may also be carriers of organic pollutants. We analyzed MP number, shape, color, and polymer type distribution in sewage wastewater treatment plants. The potential of MPs to act as carriers for typical organic pollutants in sewage, such as bisphenol A (BPA), was also assessed. The predominant MPs in the influent were fibers, primarily transparent and black in color, and composed of polyethylene, polypropylene, and polystyrene. During wastewater treatment, the concentration of MPs decreased from 10.89 items per L in the influent to 0.89 items per L in the treated effluent, with significant differences in treatment efficiency at different stages. In the simulated wastewater, the three predominant MPs exhibited certain adsorption capacities for bisphenol A. Changing the temperature and pH within the range expected for wastewater could interfere with the interactions between MPs and bisphenol A, with a limited impact on adsorption. The results show that although wastewater treatment plants intercept a significant amount of MP, a considerable number of them enter the aquatic environment daily because of the high volume of wastewater discharge. These MPs, which carry pollutants such as bisphenol A, may threaten the health of fish and other aquatic organisms. However, by scientifically adjusting operational parameters, wastewater treatment plants could become “controllable sources” of MP compound pollutants.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 10","pages":" 1811-1820"},"PeriodicalIF":4.3,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142102304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sarah E. Rothenberg, Susan A. Korrick, Donald Harrington, Sally W. Thurston, Sarah E. Janssen, Michael T. Tate, YanFen Nong, Hua Nong, Jihong Liu, Chuan Hong and Fengxiu Ouyang
{"title":"Hair mercury isotopes, a noninvasive biomarker for dietary methylmercury exposure and biological uptake†","authors":"Sarah E. Rothenberg, Susan A. Korrick, Donald Harrington, Sally W. Thurston, Sarah E. Janssen, Michael T. Tate, YanFen Nong, Hua Nong, Jihong Liu, Chuan Hong and Fengxiu Ouyang","doi":"10.1039/D4EM00231H","DOIUrl":"10.1039/D4EM00231H","url":null,"abstract":"<p > <em>Background</em>. Fish and rice are the main dietary sources of methylmercury (MeHg); however, rice does not contain the same beneficial nutrients as fish, and these differences can impact the observed health effects of MeHg. Hence, it is important to validate a biomarker, which can distinguish among dietary MeHg sources. <em>Methods</em>. Mercury (Hg) stable isotopes were analyzed in hair samples from peripartum mothers in China (<em>n</em> = 265). Associations between mass dependent fractionation (MDF) (<em>δ</em><small><sup>202</sup></small>Hg) and mass independent fractionation (MIF) (<em>Δ</em><small><sup>199</sup></small>Hg) (dependent variables) and dietary MeHg intake (independent variable) were investigated using multivariable regression models. <em>Results</em>. In adjusted models, hair <em>Δ</em><small><sup>199</sup></small>Hg was positively correlated with serum omega-3 fatty acids (a biomarker for fish consumption) and negatively correlated with maternal rice MeHg intake, indicating MIF recorded in hair can be used to distinguish MeHg intake predominantly from fish <em>versus</em> rice. Conversely, in adjusted models, hair <em>δ</em><small><sup>202</sup></small>Hg was not correlated with measures of dietary measures of MeHg intake. Instead, hair <em>δ</em><small><sup>202</sup></small>Hg was strongly, negatively correlated with hair Hg, which explained 27–29% of the variability in hair <em>δ</em><small><sup>202</sup></small>Hg. <em>Conclusions</em>. Our results indicated that hair <em>Δ</em><small><sup>199</sup></small>Hg can be used to distinguish MeHg intake from fish <em>versus</em> rice. Results also suggested that lighter isotopes were preferentially accumulated in hair, potentially reflecting Hg binding to thiols (<em>i.e.</em>, cysteine); however, more research is needed to elucidate this hypothesis. Broader impacts include 1) validation of a non-invasive biomarker to distinguish MeHg intake from rice <em>versus</em> fish, and 2) the potential to use Hg isotopes to investigate Hg binding in tissues.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 11","pages":" 1975-1985"},"PeriodicalIF":4.3,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142078512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Lv, Xiaodong Wang, Beibei Wang and Wenjie Yuan
{"title":"Experimental assessment of low temperature plasma devices for bacterial aerosol inactivation in the air duct of HVAC systems","authors":"Yang Lv, Xiaodong Wang, Beibei Wang and Wenjie Yuan","doi":"10.1039/D4EM00158C","DOIUrl":"10.1039/D4EM00158C","url":null,"abstract":"<p >In light of growing concerns about indoor air quality and the transmission of pathogens, this study aims to evaluate the effectiveness of low temperature plasma (LTP) devices in inactivating bacterial aerosols in the air duct of HVAC systems, exploring methods to enhance air purification efficiency. This research employed experimental methods to explore the deactivation effects of LTP on common bacteria such as <em>E. coli</em> and <em>Bacillus subtilis</em>, focusing on the role of air parameters such as the airflow rate, relative humidity, and temperature in influencing the device's performance. Notably, the study determined that an operational voltage of 3000 V for the LTP device, combined with conditions of low airflow, low humidity, and high temperature, significantly enhances the inactivation of bacterial aerosols, achieving an 82% inactivation rate at a negative ion concentration of 2.4 × 10<small><sup>11</sup></small> ions per m<small><sup>3</sup></small> and a wind speed of 3 m s<small><sup>−1</sup></small>. Despite the generation of ozone and ultraviolet light as by-products, their concentrations were found to be within safe limits for human exposure. In addition, this study identified an effective inactivation range, alongside an optimal arrangement for the airflow direction within ducts, to maximize the sterilization efficiency of the LTP device. Given these promising results, the study advocates for the integration of LTP technology into the air duct of HVAC systems of public buildings to improve air quality and reduce the risk of airborne disease transmission.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 10","pages":" 1836-1846"},"PeriodicalIF":4.3,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142102302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Erica A. Wiener, Jessica M. Ewald and Gregory H. LeFevre
{"title":"Fungal diversity and key functional gene abundance in Iowa bioretention cells: implications for stormwater remediation potential†","authors":"Erica A. Wiener, Jessica M. Ewald and Gregory H. LeFevre","doi":"10.1039/D4EM00275J","DOIUrl":"10.1039/D4EM00275J","url":null,"abstract":"<p >Stormwater bioretention cells are green stormwater infrastructure systems that can help mitigate flooding and remove contaminants. Plants and bacteria improve nutrient removal and degrade organic contaminants; however, the roles of fungi in bioretention cells are less known. Although mycorrhizal fungi aid in plant growth/improve nutrient uptake, there is a notable lack of research investigating fungal diversity in bioretention cells. Other types of fungi could benefit bioretention cells (<em>e.g.</em>, white rot fungi degrade recalcitrant contaminants). This study addresses the knowledge gap of fungal function and diversity within stormwater bioretention cells. We collected multiple soil samples from 27 different bioretention cells in temperate-climate eastern Iowa USA, characterized soil physicochemical parameters, sequenced the internal transcribed spacer (ITS) amplicon to identify fungal taxa from extracted DNA, and measured functional gene abundances for two fungal laccases (<em>Cu1</em>, <em>Cu1A</em>) and a fungal nitrite reductase gene (<em>nirKf</em>). Fungal biodegradation functional genes were present in bioretention soils (mean copies per g: 7.4 × 10<small><sup>5</sup></small><em>nirKf</em>, 3.2 × 10<small><sup>6</sup></small><em>Cu1</em>, 4.0 × 10<small><sup>8</sup></small><em>Cu1A</em>), with abundance of fungal laccase and fungal nitrite reductase genes significantly positively correlated with soil pH and organic matter (Pearson's <em>R</em>: >0.39; rho < 0.05). PERMANOVA analysis determined soil characteristics were not significant explanatory variables for community composition (beta diversity). In contrast, planting specifications significantly impacted fungal diversity; the presence/absence of a few planting types and predominant vegetation type in the cell explained 89% of variation in fungal diversity. These findings further emphasize the importance of plants and media as key design parameters for bioretention cells, with implications for fungal bioremediation of captured stormwater contaminants.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 10","pages":" 1796-1810"},"PeriodicalIF":4.3,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/em/d4em00275j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142078511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}