{"title":"Polyethylene microplastics affect behavioural, oxidative stress, and molecular responses in the Drosophila model","authors":"Himanshu Ranjan, Swetha Senthil Kumar, Sharine Priscilla, Subhashini Swaminathan, Masakazu Umezawa and Sahabudeen Sheik Mohideen","doi":"10.1039/D4EM00537F","DOIUrl":"10.1039/D4EM00537F","url":null,"abstract":"<p >The escalating presence of microplastic pollution poses a significant environmental threat, with far-reaching implications for both ecosystems and human health. This study investigated the toxicological impact of polyethylene microplastics (PE MPs) using <em>Drosophila melanogaster</em>, fruit flies, as a model organism. <em>Drosophila</em> were exposed to PE MPs orally at concentrations of 1 mg ml<small><sup>−1</sup></small> and 10 mg ml<small><sup>−1</sup></small> agar food. The study assessed behavioural parameters and biochemical markers including reactive oxygen species (ROS), superoxide dismutase (SOD), and glutathione-<em>S</em>-transferase (GST) activity. The expression levels of key genes (<em>Hsp70Bc</em>, <em>rpr</em>, and <em>p53</em>) were also analysed using the RT-qPCR technique. Results indicated a significant decline in climbing activity among adult flies and crawling behaviour in larvae, indicating potential disruption of motor function. Biochemical analysis revealed elevated ROS levels, indicative of oxidative stress, in both larval and fly stages. Moreover, the antioxidant defence system exhibited decreased SOD activity and a concentration-dependent increase in GST activity indicating the functioning of a quick xenobiotic clearance mechanism. Gene expression analysis demonstrated upregulation of <em>rpr</em>, <em>p53</em>, and <em>Hsp70Bc</em> genes, suggesting activation of cell death pathways and stress response mechanisms. Overall, these findings underline the adverse effects of PE MPs on <em>Drosophila</em>, including behavioural impairment, oxidative stress, and activation of stress response pathways.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 12","pages":" 2203-2214"},"PeriodicalIF":4.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/em/d4em00537f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Organic aerosol formation from 222 nm germicidal light: ozone-initiated <i>vs.</i> non-ozone pathways.","authors":"Matthew B Goss, Jesse H Kroll","doi":"10.1039/d4em00384e","DOIUrl":"10.1039/d4em00384e","url":null,"abstract":"<p><p>Germicidal ultraviolet lamps outputting 222 nm light (GUV<sub>222</sub>) have the potential to reduce the airborne spread of disease through effective inactivation of pathogens, while remaining safe for direct human exposure. However, recent studies have identified these lamps as a source of ozone and other secondary pollutants such as secondary organic aerosol (SOA), and the health effects of these pollutants must be balanced against the benefits of pathogen inactivation. While ozone reactions are likely to account for much of this secondary indoor air pollution, 222 nm light may initiate additional non-ozone chemical processes, including the formation of other oxidants and direct photolytic reactions, which are not as well understood. This work examines the impacts of GUV<sub>222</sub> on SOA formation and composition by comparing limonene oxidation under GUV<sub>222</sub> and O<sub>3</sub>-only control conditions in a laboratory chamber. Differences between these experiments enable us to distinguish patterns in aerosol formation driven by ozone chemistry from those driven by other photolytic processes. These experiments also examine the influence of the addition of NO<sub>2</sub> and nitrous acid (HONO), and investigate SOA formation in sampled outdoor air. SOA composition and yield vary only slightly with respect to GUV<sub>222</sub><i>vs.</i> ozone-only conditions; NO<sub>2</sub> and HONO photolysis do not appreciably affect the observed chemistry. In contrast, we observe consistent new particle formation under high-fluence 222 nm light (45 μW cm<sup>-2</sup>) that differs substantially from ozone-only experiments. This observed new particle formation represents an additional reason to keep GUV<sub>222</sub> fluence rates to the lowest effective levels.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497901/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kendra Z. Hess, Kyle R. Forsythe, Xuewen Wang, Andrea Arredondo-Navarro, Gwen Tipling, Jesse Jones, Melissa Mata, Victoria Hughes, Christine Martin, John Doyle, Justin Scott, Matteo Minghetti, Andrea Jilling, José M. Cerrato, Eliane El Hayek and Jorge Gonzalez-Estrella
{"title":"Emerging investigator series: open dumping and burning: an overlooked source of terrestrial microplastics in underserved communities†","authors":"Kendra Z. Hess, Kyle R. Forsythe, Xuewen Wang, Andrea Arredondo-Navarro, Gwen Tipling, Jesse Jones, Melissa Mata, Victoria Hughes, Christine Martin, John Doyle, Justin Scott, Matteo Minghetti, Andrea Jilling, José M. Cerrato, Eliane El Hayek and Jorge Gonzalez-Estrella","doi":"10.1039/D4EM00439F","DOIUrl":"10.1039/D4EM00439F","url":null,"abstract":"<p >Open dumping and burning of solid waste are widely practiced in underserved communities lacking access to solid waste management facilities; however, the generation of microplastics from these sites has been overlooked. We report elevated concentrations of microplastics (MPs) in soil of three solid waste open dump and burn sites: a single-family site in Tuttle, Oklahoma, USA, and two community-wide sites in Crow Agency and Lodge Grass, Montana, USA. We extracted, quantified, and characterized MPs from two soil depths (0–9 cm and 9–18 cm). The average of abundance of particles found at community-wide sites three sites (18, 460 particles kg<small><sup>−1</sup></small> soil) equals or exceeds reported concentrations from currently understood sources of MPs including biosolids application and other agricultural practices. Attenuated total reflectance Fourier transformed infrared (ATR-FTIR) identified polyethylene as the dominant polymer across all sites (46.2–84.8%). We also detected rayon (≤11.5%), polystyrene (up to 11.5%), polyethylene terephthalate (≤5.1), polyvinyl chloride (≤4.4%), polyester (≤3.1), and acrylic (≤2.2%). Burned MPs accounted for 76.3 to 96.9% of the MPs found in both community wide dumping sites. These results indicate that solid waste dumping and burning activities are a major source of thermally oxidized MPs for the surrounding terrestrial environment with potential to negatively affect underserved communities.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 1","pages":" 52-62"},"PeriodicalIF":4.3,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533025/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Estefania Garcia, Pan Liu, Sharon E. Bone, Yinghao Wen and Yuanzhi Tang
{"title":"Systematic characterization of selenium speciation in coal fly ash†","authors":"Estefania Garcia, Pan Liu, Sharon E. Bone, Yinghao Wen and Yuanzhi Tang","doi":"10.1039/D4EM00398E","DOIUrl":"10.1039/D4EM00398E","url":null,"abstract":"<p >Millions of tons of coal fly ashes (CFAs) are produced annually during coal combustion in the U.S., which are commonly beneficially used in the concrete industry or disposed of in ash ponds. CFAs contain trace amounts of a range of toxic heavy metals including selenium (Se). Because the toxicity of Se is dependent on its speciation, investigating Se speciation in CFAs as affected by coal source and combustion conditions can help understand the related environmental and human health impacts during disposal or beneficial reuse. In this study, a set of representative CFA samples were characterized for Se speciation using synchrotron X-ray absorption spectroscopy (XAS) and micro-X-ray fluorescence spectromicroscopy (μ-XRF/XAS). Se-containing particles were highly heterogeneous, and individual particles might contain multiple oxidation states including Se(0), Se(<small>IV</small>), and Se(<small>VI</small>). Principal component analysis was performed for sample characteristics including Al<small><sub>2</sub></small>O<small><sub>3</sub></small>, SiO<small><sub>2</sub></small>, CaO, FeO, loss on ignition, average particle size, Se concentration, and Se oxidation state. Selective catalytic reduction (SCR), which is used to limit nitrogen oxide (NO<small><sub><em>x</em></sub></small>) emissions during coal combustion, was found to be associated with the presence of reduced Se oxidation states, with up to 90% Se(0) observed in samples with SCR. Alongside SCR, FeO content may also influence Se speciation.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 12","pages":" 2240-2249"},"PeriodicalIF":4.3,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/em/d4em00398e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoxia Wang, Zhongneng Yang, Xiao-Min Ren, Zhenghuan Zhang, Huan He and Xuejun Pan
{"title":"Assessment of the cytotoxicity micro- and nano-plastic on human intestinal Caco-2 cells and the protective effects of catechin†","authors":"Xiaoxia Wang, Zhongneng Yang, Xiao-Min Ren, Zhenghuan Zhang, Huan He and Xuejun Pan","doi":"10.1039/D4EM00408F","DOIUrl":"10.1039/D4EM00408F","url":null,"abstract":"<p >Micro- and nano-plastics (M/NPs) potentially leach from plastic wrapping into food and beverages. However, the risks of ingested M/NPs to human intestinal health remain unclear. This study aimed to determine the potential risks and mechanisms of PS-M/NPs using a human intestinal epithelial <em>in vitro</em> model and to explore protective measures to reduce these risks. The results showed that polystyrene (PS) M/NPs exhibited size-dependent cytotoxicity (3 μm < 0.3 μm < 80 nm < 20 nm). Additionally, by measuring intracellular reactive oxygen species (ROS) production after exposure to PS-M/NPs and the elimination of ROS by <em>N</em>-acetyl-<small>L</small>-cysteine, we identified oxidative stress as a mechanism of PS-M/NP-induced cytotoxicity. Hazard quotients calculated from the study indicated that the risks of M/NPs derived from plastic teabags exceeded the margin of safety, suggesting that ingested M/NPs potentially pose a risk to human intestinal health. Furthermore, this study found that catechins can reduce the adverse effects of M/NPs, so we propose that drinking tea may offer a protective effect against the harm of M/NPs on the intestinal system.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 12","pages":" 2166-2176"},"PeriodicalIF":4.3,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Wang, Jun Yang, Guishan Yang, Chao Wu and Jie Yu
{"title":"How do ecosystem service functions affect ecological health? Evidence from the Yangtze River Economic Belt in China†","authors":"Wei Wang, Jun Yang, Guishan Yang, Chao Wu and Jie Yu","doi":"10.1039/D4EM00296B","DOIUrl":"10.1039/D4EM00296B","url":null,"abstract":"<p >Ecosystem services play an essential role as intermediaries, linking natural ecosystem resources to socio-economic demands. Understanding their impact on ecological well-being is pivotal for ensuring regional environmental security and promoting sustainable societal and economic development. However, there is insufficient research on the relationship between the two. Accordingly, this study explores the evolutionary relationship between ecological health and ecosystem services by constructing an evaluation system. Regression analysis is used to explore the spatial relationship between ecosystem services and ecological health, providing a reference for maintaining the balance between ecological supply and ecological health. The results show that from 1980 to 2020, an overall improvement was observed in the eco-health index of the Yangtze River Economic Belt's. This improvement was notably marked by substantial growth in the eco-vitality index alongside consistent maintenance of the spatial distribution within the eco-organization index. With regard to distributions of specific ecosystem services, dispersed occurrences characterized areas with high water production and crop yield levels; however, within forested regions, attributes for habitat quality preservation, water purification, soil retention and carbon sequestration were predominant. In the impact of ecosystem services on ecological health, food production held sway over less-developed areas, while soil conservation, water supply and habitat quality exerted greater influence over more-developed regions. This study regards ecosystem services as a bridge connecting humans and the environment not only providing a material basis for society but also reflecting the status of ecological health.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 12","pages":" 2215-2226"},"PeriodicalIF":4.3,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Danushika C. Manatunga, Madushika Sewwandi, Kalani Imalka Perera, Methmini Dilhara Jayarathna, Dinusha L. Peramune, Rohan S. Dassanayake, Sammani Ramanayaka and Meththika Vithanage
{"title":"Plasticizers: distribution and impact in aquatic and terrestrial environments†","authors":"Danushika C. Manatunga, Madushika Sewwandi, Kalani Imalka Perera, Methmini Dilhara Jayarathna, Dinusha L. Peramune, Rohan S. Dassanayake, Sammani Ramanayaka and Meththika Vithanage","doi":"10.1039/D4EM00317A","DOIUrl":"10.1039/D4EM00317A","url":null,"abstract":"<p >Plasticizers, essential additives for enhancing plastic properties, have emerged as significant environmental and health concerns due to their persistence and widespread use. This study provides an in-depth exploration of plasticizers, focusing on their types, structures, properties, production methods, environmental distribution, and associated risks. The findings reveal that petroleum-based phthalates, particularly di-(2-ethylhexyl) phthalate (DEHP), are prevalent in aquatic and terrestrial environments, primarily due to the gradual degradation of plastic polymers. In the analysis of 39 studies on water contamination during the period of 2022–2023, only 22 works could be extracted due to insufficient details on the numerical value of plasticizer concentrations. Similarly, soil and sediment contamination studies were fewer, with only 11 studies focusing on sediments. These studies reveal that high plasticizer concentrations, notably in industrial and urban areas, often exceed recommended environmental limits, posing risks to ecological integrity and human health through bioaccumulation. Bioaccumulation of these compounds in soil and water could negatively affect the microbial communities, nutrient cycling, and could destabilize the overall ecological integrity. Concerns about their direct uptake by plants and potential risks to human health and food safety are highlighted in this study due to the high concentrations exceeding the threshold values. The review evaluates current treatment technologies, including metal–organic frameworks, electrochemical systems, multi-walled carbon nanotubes, and microbial degradation, noting their potential and challenges related to cost and energy consumption. It underscores the need for improved detection protocols, cost-effective treatments, stricter regulations, public awareness, and collaborative research to mitigate the adverse impacts of plasticizers on ecosystems and human health.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 12","pages":" 2114-2131"},"PeriodicalIF":4.3,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paul N. Diagboya, Bamidele I. Olu-Owolabi and Rolf-Alexander Düring
{"title":"Exploring the interactions of glyphosate in soil: the sorption scenario upon soil depletion and effect on waterleaf (Talinum triangulare) growth","authors":"Paul N. Diagboya, Bamidele I. Olu-Owolabi and Rolf-Alexander Düring","doi":"10.1039/D4EM00433G","DOIUrl":"10.1039/D4EM00433G","url":null,"abstract":"<p >The pesticide glyphosate has contributed immensely to the ease of farming and high yields. However, the ever-increasing environmental input of pesticides is of particular interest due to several unintended effects on non-target organisms. In soil, the sorption, transport, possible uptake, and effect on plant growth are still not well understood, and much so for the sub-Sahara. Sorption processes are contingent on the soil composition, characteristics, and ambient conditions, and these are becoming increasingly affected by climate change in a way that may alter pesticide fate. Hence, representative sub-Saharan whole soil (WS) treated to eliminate organic matter (OMR) and iron oxides (IOR) was employed to ascertain the contributions of these major constituents to glyphosate sorption processes, as well as ascertain the effect of glyphosate in soil on the growth of <em>Talinum triangulare</em>–waterleaf. Glyphosate sorption for all treatments was rapid with equilibrium at around 720 min. The sorption decreased as pH increased, and was concentration-dependent, gradually increasing with glyphosate concentration. The process was endothermic, and sorption data were better described by the fractal pseudo-second-order and Freundlich adsorption isotherm models, suggesting a complex interplay of interactive sorption forces. The IOR sample (with iron oxide depleted but organic matter intact) exhibited higher sorption than the OMR and WS, highlighting the contribution of organic matter in glyphosate sorption. Hysteresis was high for all samples and increased with temperature. Considering the unregulated usage of glyphosate in the sub-Sahara, the poor sorption, especially in treated soils, observed in this study suggests a high possibility of glyphosate leaching into the aquifer and poisoning of this water source, while the high hysteresis implied the bio-availability of glyphosate in surface soil for plant absorption, hence affecting growth; as confirmed in the waterleaf growth study where growth in the organic-matter/iron-oxide-depleted soils was substantially stunted. Hence, glyphosate affects waterleaf growth, especially in organic-matter/iron-oxide-depleted soils.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 11","pages":" 2051-2061"},"PeriodicalIF":4.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carlos Silva, Etelvina Figueira, Diana Matos, Carina Sá, Tânia Vidal, Fernando José Mendes Gonçalves, Nelson Abrantes and Joana Luísa Pereira
{"title":"Assessment of extracellular polymeric substances production and antioxidant defences in periphytic communities exposed to effluent contaminants†","authors":"Carlos Silva, Etelvina Figueira, Diana Matos, Carina Sá, Tânia Vidal, Fernando José Mendes Gonçalves, Nelson Abrantes and Joana Luísa Pereira","doi":"10.1039/D4EM00446A","DOIUrl":"10.1039/D4EM00446A","url":null,"abstract":"<p >Periphyton is frequently used in the evaluation of the ecological status of aquatic ecosystems using diatoms as a proxy. However, periphyton has a particularity, the production of extracellular polymeric substances (EPS), which might play a protective role against exposure to harmful environmental contaminants. Effluents originating in wastewater treatment plants (WWTPs) constitute some of the most complex mixtures of contaminants, to which aquatic ecosystems are frequently exposed, often containing tens to hundreds of different chemicals. In such challenging scenarios, a putative protective role of EPS may obscure the bioindicator value of diatoms. To address this problem, we sampled periphyton upstream and downstream of the effluent outfall from three different WWTPs, quantifying EPS production and simultaneously evaluating general stress responses in the community (protein and sugar content, photosynthetic pigments, antioxidant enzyme activity and oxidative damage). By combining these endpoints with a characterization of the sediments of the riverine systems receiving the effluents made in a previous study (metals, polycyclic aromatic hydrocarbons, pharmaceuticals and personal care products), we aimed to elucidate whether effluent contaminants trigger negative effects, which may be mitigated by EPS layers protecting the communities. Our results indicated that under a comparatively milder contamination burden, EPS production is enhanced in samples collected downstream of the effluent outfall; under a higher contamination burden, EPS production is hampered. Stress-coping mechanisms were activated by environmental contaminants, including the antioxidant defense, particularly through catalase and superoxide dismutase activity. The findings support the generally assumed protective effect of EPS, but also suggest that EPS production depends on the contamination burden and that protective effects should be in place under specific scenarios of, for example, relatively low contamination levels. Overall, the integrative approach used in this study contributes to a better understanding of the complex interplay of interactions between effluent-driven contamination and thriving periphytic communities inhabiting recipient waterways, including evolved protection mechanisms.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 11","pages":" 2090-2102"},"PeriodicalIF":4.3,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marc Webb, Glenn Morrison, Karsten Baumann, Jienan Li, Jenna C Ditto, Han N Huynh, Jie Yu, Kathryn Mayer, Liora Mael, Marina E Vance, Delphine K Farmer, Jonathan Abbatt, Dustin Poppendieck, Barbara J Turpin
{"title":"Dynamics of residential indoor gas- and particle-phase water-soluble organic carbon: measurements during the CASA experiment.","authors":"Marc Webb, Glenn Morrison, Karsten Baumann, Jienan Li, Jenna C Ditto, Han N Huynh, Jie Yu, Kathryn Mayer, Liora Mael, Marina E Vance, Delphine K Farmer, Jonathan Abbatt, Dustin Poppendieck, Barbara J Turpin","doi":"10.1039/d4em00340c","DOIUrl":"10.1039/d4em00340c","url":null,"abstract":"<p><p>Previous time-integrated (2 h to 4 h) measurements show that total gas-phase water-soluble organic carbon (WSOC<sub>g</sub>) is 10 to 20 times higher inside homes compared to outside. However, concentration dynamics of WSOC<sub>g</sub> and total particle phase WSOC (WSOC<sub>p</sub>)-are not well understood. During the Chemical Assessment of Surfaces and Air (CASA) experiment, we measured concentration dynamics of WSOC<sub>g</sub> and WSOC<sub>p</sub> inside a residential test facility in the house background and during scripted activities. A total organic carbon (TOC) analyzer pulled alternately from a particle-into-liquid sampler (PILS) or a mist chamber (MC). WSOC<sub>g</sub> concentrations (215 ± 29 μg-C m<sup>-3</sup>) were generally 36× higher than WSOC<sub>p</sub> (6 ± 3 μg-C m<sup>-3</sup>) and 20× higher than outdoor levels. A building-specific emission factor (<i>E</i><sub>f</sub>) of 31 mg-C h<sup>-1</sup> maintained the relatively high house WSOC<sub>g</sub> background, which was dominated by ethanol (46 μg-C m<sup>-3</sup> to 82 μg-C m<sup>-3</sup>). When we opened the windows, WSOC<sub>g</sub> decayed slower (2.8 h<sup>-1</sup>) than the air change rate (21.2 h<sup>-1</sup>) and <i>E</i><sub>f</sub> increased (243 mg-C h<sup>-1</sup>). The response (increased <i>E</i><sub>f</sub>) suggests WSOC<sub>g</sub> concentrations are regulated by large near surface reservoirs rather than diffusion through surface materials. Cooking and ozone addition had a small impact on WSOC, whereas surface cleaning, volatile organic compound (VOC) additions, or wood smoke injections had significant impacts on WSOC concentrations. WSOC<sub>g</sub> concentration decay rates from these activities (0.4 h<sup>-1</sup> to 4.0 h<sup>-1</sup>) were greater than the normal operating 0.24 h<sup>-1</sup> air change rate, which is consistent with an important role for surface removal.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}