Environmental Science: Processes & Impacts最新文献

筛选
英文 中文
Kinetic multilayer models for surface chemistry in indoor environments. 室内环境表面化学动力学多层模型。
IF 4.3 3区 环境科学与生态学
Environmental Science: Processes & Impacts Pub Date : 2024-11-11 DOI: 10.1039/d4em00549j
Pascale S J Lakey, Manabu Shiraiwa
{"title":"Kinetic multilayer models for surface chemistry in indoor environments.","authors":"Pascale S J Lakey, Manabu Shiraiwa","doi":"10.1039/d4em00549j","DOIUrl":"10.1039/d4em00549j","url":null,"abstract":"<p><p>Multiphase interactions and chemical reactions at indoor surfaces are of particular importance due to their impact on air quality in indoor environments with high surface to volume ratios. Kinetic multilayer models are a powerful tool to simulate various gas-surface interactions including partitioning, diffusion and multiphase chemistry of indoor compounds by treating mass transport and chemical reactions in a number of model layers in the gas and condensed phases with a flux-based approach. We have developed a series of kinetic multilayer models that have been applied to describe multiphase chemistry and interactions indoors. They include the K2-SURF model treating the reversible adsorption of volatile organic compounds on surfaces, the KM-BL model treating diffusion through an indoor surface boundary layer, the KM-FILM model treating organic film formation by multi-layer adsorption and film growth by absorption of indoor compounds, and the KM-SUB-Skin-Clothing model treating reactions of ozone with skin lipids in skin and clothing. We also developed the effective mass accommodation coefficient that can treat surface partitioning by effectively taking into account kinetic limitations of bulk diffusion. In this study we provide detailed instructions and code annotations of these models for the model user. Example sensitivity simulations that investigate the impact of input parameters are presented to help with familiarization to the codes. The user can adapt the codes as required to model experimental and indoor field campaign measurements, can use the codes to gain insights into important reactions and processes, and can extrapolate to new conditions that may not be accessible by measurements.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Domestic groundwater wells in Appalachia show evidence of low-dose, complex mixtures of legacy pollutants† 阿巴拉契亚地区的家用地下水井显示了低剂量、复杂的遗留污染物混合物。
IF 4.3 3区 环境科学与生态学
Environmental Science: Processes & Impacts Pub Date : 2024-11-06 DOI: 10.1039/D4EM00364K
Nicolette A. Bugher, Boya Xiong, Runako I. Gentles, Lukas D. Glist, Helen G. Siegel, Nicholaus P. Johnson, Cassandra J. Clark, Nicole C. Deziel, James E. Saiers and Desiree L. Plata
{"title":"Domestic groundwater wells in Appalachia show evidence of low-dose, complex mixtures of legacy pollutants†","authors":"Nicolette A. Bugher, Boya Xiong, Runako I. Gentles, Lukas D. Glist, Helen G. Siegel, Nicholaus P. Johnson, Cassandra J. Clark, Nicole C. Deziel, James E. Saiers and Desiree L. Plata","doi":"10.1039/D4EM00364K","DOIUrl":"10.1039/D4EM00364K","url":null,"abstract":"<p >Lack of water quality data for private drinking water sources prevents robust evaluation of exposure risk for communities co-located with historically contaminated sites and ongoing industrial activity. Areas of the Appalachian region of the United States (<em>i.e.</em>, Pennsylvania, Ohio and West Virginia) contain extensive hydraulic fracturing activity, as well as other extractive and industrial technologies, in close proximity to communities reliant on private drinking water sources, creating concern over potential groundwater contamination. In this study, we characterized volatile organic compound (VOC) occurrence at 307 private groundwater well sites within Pennsylvania, Ohio, and West Virginia. The majority (97%) of water samples contained at least one VOC, while the average number of VOCs detected at a given site was 5 ± 3. The majority of individual VOC concentrations fell below applicable U.S. Environmental Protection Agency (EPA) Maximum Contamination Levels (MCLs), except for chloroform (MCL of 80 μg L<small><sup>−1</sup></small>; <em>n</em> = 1 at 98 μg L<small><sup>−1</sup></small>), 1,2-dibromoethane (MCL of 0.05 μg L<small><sup>−1</sup></small>; <em>n</em> = 3 ranging from 0.05 to 0.35 μg L<small><sup>−1</sup></small>), and 1,2-dibromo-3-chloropropane (MCL of 0.2 μg L<small><sup>−1</sup></small>; <em>n</em> = 7 ranging from 0.20 to 0.58 μg L<small><sup>−1</sup></small>). To evaluate well susceptibility to VOCs from industrial activity, distance to hydraulic fracturing site was used to assess correlations with contaminant occurrences. Proximity to closest hydraulic fracturing well-site revealed no statistically significant linear relationships with either individual VOC concentrations, or frequency of VOC detections. Evaluation of other known industrial contamination sites (<em>e.g.</em>, US EPA Superfund sites) revealed elevated levels of three VOCs (chloroform, toluene, benzene) in groundwaters within 10 km of those Superfund sites in West Virginia and Ohio, illuminating possible point source influence. Lack of correlation between VOC concentrations and proximity to specific point sources indicates complex geochemical processes governing trace VOC contamination of private drinking water sources. While individual concentrations of VOCs fell well below recommended human health levels, the low dose exposure to multiple VOCs occurring in drinking supplies for Appalachian communities was noted, highlighting the importance of groundwater well monitoring.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 12","pages":" 2250-2263"},"PeriodicalIF":4.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/em/d4em00364k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mobile monitoring reveals the importance of non-vehicular particulate matter sources in London† 移动监测显示了伦敦非车载颗粒物来源的重要性。
IF 4.3 3区 环境科学与生态学
Environmental Science: Processes & Impacts Pub Date : 2024-11-04 DOI: 10.1039/D4EM00552J
Samuel Wilson, Naomi J. Farren, Shona E. Wilde, Rebecca L. Wagner, James D. Lee, Lauren E. Padilla, Greg Slater, Daniel Peters and David. C. Carslaw
{"title":"Mobile monitoring reveals the importance of non-vehicular particulate matter sources in London†","authors":"Samuel Wilson, Naomi J. Farren, Shona E. Wilde, Rebecca L. Wagner, James D. Lee, Lauren E. Padilla, Greg Slater, Daniel Peters and David. C. Carslaw","doi":"10.1039/D4EM00552J","DOIUrl":"10.1039/D4EM00552J","url":null,"abstract":"<p >This study uses mobile monitoring to gain a better understanding of particulate matter (PM) sources in two areas of Central and Outer London, UK. We find that, unlike emissions of nitrogen oxides (NO + NO<small><sub>2</sub></small> = NO<small><sub><em>x</em></sub></small>), which are elevated in Central London due to the high number of diesel vehicles and congestion, fine particulate matter (PM<small><sub>2.5</sub></small>) emissions are well-controlled. This finding provides evidence for the effectiveness of vehicle particulate filters, supporting the view that their widespread adoption has mitigated PM<small><sub>2.5</sub></small> emissions, even in the highly dieselized area of Central London. However, mobile monitoring also reveals infrequent elevated PM<small><sub>2.5</sub></small> concentrations caused by malfunctioning vehicles. These events were confirmed through simultaneous measurements of PM<small><sub>2.5</sub></small> and sulfur dioxide (SO<small><sub>2</sub></small>), the latter being a strong tracer of engine lubricant combustion. A single event from a gasoline car, representing just 0.15% of the driving distance in Outer London, was responsible for 7.4% of the ΔPM<small><sub>2.5</sub></small> concentration above background levels, highlighting the ongoing importance of addressing high-emission vehicles. In a novel application of mobile monitoring, we demonstrate the ability to identify and quantify non-vehicular sources of PM. Among the sources unambiguously identified are construction activities, which result in elevated concentrations of coarse particulate matter (PM<small><sub>coarse</sub></small> = PM<small><sub>10</sub></small> − PM<small><sub>2.5</sub></small>). The mobile measurements clearly highlight the spatial extent of the influence of such sources, which would otherwise be difficult to determine. Furthermore, these sources are shown to be weather-dependent, with PM<small><sub>coarse</sub></small> concentrations reduced by 62.1% during wet conditions compared to dry ones.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 12","pages":" 2145-2157"},"PeriodicalIF":4.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/em/d4em00552j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Validation of a laboratory spray generation system and its use in a comparative study of hexamethylene diisocyanate (HDI) evaluation methods† 验证实验室喷雾生成系统并将其用于六亚甲基二异氰酸酯 (HDI) 评估方法的比较研究。
IF 4.3 3区 环境科学与生态学
Environmental Science: Processes & Impacts Pub Date : 2024-11-04 DOI: 10.1039/D4EM00513A
Hugues Ahientio, Loïc Wingert, Sébastien Gagné, Livain Breau, Jacques Lesage and Simon Aubin
{"title":"Validation of a laboratory spray generation system and its use in a comparative study of hexamethylene diisocyanate (HDI) evaluation methods†","authors":"Hugues Ahientio, Loïc Wingert, Sébastien Gagné, Livain Breau, Jacques Lesage and Simon Aubin","doi":"10.1039/D4EM00513A","DOIUrl":"10.1039/D4EM00513A","url":null,"abstract":"<p >Isocyanates are well-known irritants and sensitizers, and measuring their occupational airborne exposure is challenging due to their high chemical reactivity and semi-volatile nature. This study builds on a previous publication by our team that focused on comparing evaluation methods for isocyanates. The current research aims at developing, validating, and applying a laboratory generation system designed to replicate real-world conditions for spraying clear coats in autobody shops using hexamethylene diisocyanate (HDI)-based products. The system involved a spray gun connected to two chambers in series, enabling sample collection and analysis. The system successfully generated HDI and isocyanurate concentrations ranging from 0.008 to 0.040 mg m<small><sup>−3</sup></small> and 0.351 to 3.45 mg m<small><sup>−3</sup></small>, respectively, with spatial homogeneity (RSD) of 5.8% and 16.5%. The particle-size distribution (MMAD) of 4 μm was measured using a cascade impactor and an electrical low-pressure impactor. The samples generated were used to correlate the amount of isocyanates collected with scanning electron microscope images of droplets on a filter. Three methods were compared to the reference method—an impinger with a backup glass fibre filter (GFF) and 1,2-methoxyphenylpiperazine (MP) based on ISO 16702/MDHS 25—in six generation experiments: (1) Swinnex cassette 13 mm GFF MP (MP-Swin); (2) closed-face cassette 37 mm GFF (end filter and inner walls) MP (MP-37); and (3) denuder and GFF dibutylamine (DBA) (ISO 17334-1 Asset). The analysis revealed clear trends regarding which sampler sections collected HDI (mainly in the vapor phase) or isocyanurate (exclusively in the particulate phase). The study found no significant bias between the tested methods (MP-Swin, MP-37, and Asset) and the reference method (impinger) for both HDI monomer and isocyanurate. The three tested methods showed limits of agreement beyond the acceptable range of ±30% (95% confidence interval), largely due to data variability, though MP-Swin and MP-37 exhibited lower variability than Asset. The results will be further evaluated in a real-world environment where similar clear coats are used.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 1","pages":" 119-132"},"PeriodicalIF":4.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A methodology for estimating indoor sources contributing to PM2.5† 估算导致 PM2.5 的室内来源的方法。
IF 4.3 3区 环境科学与生态学
Environmental Science: Processes & Impacts Pub Date : 2024-11-01 DOI: 10.1039/D4EM00538D
Shiva Nourani, Ana María Villalobos and Héctor Jorquera
{"title":"A methodology for estimating indoor sources contributing to PM2.5†","authors":"Shiva Nourani, Ana María Villalobos and Héctor Jorquera","doi":"10.1039/D4EM00538D","DOIUrl":"10.1039/D4EM00538D","url":null,"abstract":"<p >Quantifying source contributions to indoor PM<small><sub>2.5</sub></small> levels by indoor PM<small><sub>2.5</sub></small> sources has been limited by the costs associated with chemical speciation analyses of indoor PM<small><sub>2.5</sub></small> samples. Here, we propose a new methodology to estimate this contribution. We applied FUzzy SpatioTemporal Apportionment (FUSTA) to a database of indoor and outdoor PM<small><sub>2.5</sub></small> concentrations in school classrooms plus surface meteorological data to determine the main spatiotemporal patterns (STPs) of PM<small><sub>2.5</sub></small>. We found four dominant STPs in outdoor PM<small><sub>2.5</sub></small>, and we denoted them as regional, overnight mix, traffic, and secondary PM<small><sub>2.5</sub></small>. For indoor PM<small><sub>2.5,</sub></small> we found the same four outdoor STPs plus another STP with a distinctive temporal evolution characteristic of indoor-generated PM<small><sub>2.5</sub></small>. Concentration peaks were evident for this indoor STP due to children's activities and classroom housekeeping, and there were minimum contributions on sundays when schools were closed. The average indoor-generated estimated contribution to PM<small><sub>2.5</sub></small> was 5.7 μg m<small><sup>−3</sup></small>, which contributed to 17% of the total PM<small><sub>2.5</sub></small>, and if we consider only school hours, the respective figures are 8.1 μg m<small><sup>−3</sup></small> and 22%. A cluster-wise indoor–outdoor PM<small><sub>2.5</sub></small> regression was applied to estimate STP-specific infiltration factors (<em>F</em><small><sub>inf</sub></small>) per school. The median and interquartile range (IQR) values for <em>F</em><small><sub>inf</sub></small> are 0.83 [0.7–0.89], 0.76 [0.68–0.84], 0.72 [0.64–0.81], and 0.7 [0.62–0.9], for overnight mix, secondary, traffic, and regional sources, respectively. This cost-effective methodology can identify the indoor-generated contributions to indoor PM<small><sub>2.5</sub></small>, including their temporal variability.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 12","pages":" 2288-2296"},"PeriodicalIF":4.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/em/d4em00538d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative read-across structure–property relationship (q-RASPR): a novel approach to estimate the bioaccumulative potential for diverse classes of industrial chemicals in aquatic organisms † 定量读取-交叉结构-属性关系(q-RASPR):一种估算不同类别工业化学品在水生生物体内生物累积潜力的新方法。
IF 4.3 3区 环境科学与生态学
Environmental Science: Processes & Impacts Pub Date : 2024-11-01 DOI: 10.1039/D4EM00374H
Prodipta Bhattacharyya, Pabitra Samanta, Ankur Kumar, Shubha Das and Probir Kumar Ojha
{"title":"Quantitative read-across structure–property relationship (q-RASPR): a novel approach to estimate the bioaccumulative potential for diverse classes of industrial chemicals in aquatic organisms †","authors":"Prodipta Bhattacharyya, Pabitra Samanta, Ankur Kumar, Shubha Das and Probir Kumar Ojha","doi":"10.1039/D4EM00374H","DOIUrl":"10.1039/D4EM00374H","url":null,"abstract":"<p >The Bioconcentration Factor (BCF) is used to evaluate the bioaccumulation potential of chemical substances in reference organisms, and it directly correlates with ecotoxicity. Traditional <em>in vivo</em> BCF estimation methods are costly, time-consuming, and involve animal sacrifice. Many <em>in silico</em> technologies are used to avoid the problems associated with <em>in vivo</em> testing. This study aims to develop a quantitative read across structure–property relationship (q-RASPR) model using a structurally diverse dataset consisting of 1303 compounds by combining quantitative structure–property relationship (QSPR) and read-across (RA) algorithms. The model incorporates simple, interpretable, and reproducible 2D molecular descriptors along with RASAR descriptors. The PLS-based q-RASPR model demonstrated robust performance with internal validation metrics (<em>R</em><small><sup>2</sup></small> = 0.727 and <em>Q</em><small><sup>2</sup></small><small><sub>(LOO)</sub></small> = 0.723) and external validation metrics (<em>Q</em><small><sup>2</sup></small><small><sub>F1</sub></small> = 0.739, <em>Q</em><small><sup>2</sup></small><small><sub>F2</sub></small> = 0.739, and CCC = 0.858). These results indicate that the q-RASPR model is statistically superior to the corresponding QSPR model. Furthermore, screening of 1694 compounds from the Pesticide Properties Database (PPDB) was performed using the PLS-based q-RASPR model for assessing the eco-toxicological bioaccumulative potential of various compounds, ensuring the external predictability of the developed model and confirming the real-world application of the developed model. This model offers a reliable tool for predicting the BCF of new or untested compounds, thereby helping to develop safe and environment-friendly chemicals.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 1","pages":" 76-90"},"PeriodicalIF":4.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Commercial kitchen operations produce a diverse range of gas-phase reactive nitrogen species. 商业厨房操作会产生多种气相活性氮。
IF 4.3 3区 环境科学与生态学
Environmental Science: Processes & Impacts Pub Date : 2024-11-01 DOI: 10.1039/d4em00491d
Leigh R Crilley, Jenna C Ditto, Melodie Lao, Zilin Zhou, Jonathan P D Abbatt, Arthur W H Chan, Trevor C VandenBoer
{"title":"Commercial kitchen operations produce a diverse range of gas-phase reactive nitrogen species.","authors":"Leigh R Crilley, Jenna C Ditto, Melodie Lao, Zilin Zhou, Jonathan P D Abbatt, Arthur W H Chan, Trevor C VandenBoer","doi":"10.1039/d4em00491d","DOIUrl":"10.1039/d4em00491d","url":null,"abstract":"<p><p>Gas-phase reactive nitrogen species (N<sub>r</sub>) are important drivers of indoor air quality. Cooking and cleaning are significant direct sources indoors, whose emissions will vary depending on activity and materials used. Commercial kitchens experience regular high volumes of both cooking and cleaning, making them ideal study locations for exploring emission factors from these sources. Here, we present a total N<sub>r</sub> (tN<sub>r</sub>) budget and contributions of key species NO, NO<sub>2</sub>, acidic N<sub>r</sub> (primarily HONO) and basic N<sub>r</sub> (primarily NH<sub>3</sub>) using novel instrumentation in a commercial kitchen over a two-week period. In general, highest tN<sub>r</sub> was observed in the morning and driven compositionally by NO, indicative of cooking events in the kitchen. The observed HONO and basic N<sub>r</sub> levels were unexpectedly stable throughout the day, despite the dynamic and high air change rate in the kitchen. After summing the measured NO<sub><i>x</i></sub>, HONO and N<sub>r,base</sub> fractions, there was on average 5 ppbv of N<sub>r</sub> unaccounted for, expected to be dominated by neutral N<sub>r</sub> species. Using co-located measurements from a proton transfer reaction mass spectrometer (PTR-MS), we propose the identities for these major N<sub>r</sub> species from cooking and cleaning that contributed to N<sub>r,base</sub> and the neutral fraction of tN<sub>r</sub>. When focused specifically on cooking events in the kitchen, a vast array of N-containing species was observed by the PTR-MS. Reproducibly, oxygenated N-containing class ions (C<sub>1-12</sub>H<sub>3-24</sub>O<sub>1-4</sub>N<sub>1-3</sub>), consistent with the known formulae of amides, were observed during meat cooking and may be good cooking tracers. During cleaning, an unexpectedly high level of chloramines was observed, with monochloramine dominating the profile, as emitted directly from HOCl based cleaners or through surface reactions with reduced-N species. For many species within the tN<sub>r</sub> budget, including HONO, acetonitrile and basic N<sub>r</sub> species, we observed stable levels day and night despite the high air change rate during the day (>27 h<sup>-1</sup>). The stable levels for these species point to large surface reservoirs which act as a significant indoor source, that will be transported outdoors with ventilation.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mobility of biochar-derived dissolved organic matter and its effects on sulfamerazine transport through saturated soil porous media† 生物炭溶解有机物的流动性及其对磺胺甲基嘧啶在饱和土壤多孔介质中迁移的影响。
IF 4.3 3区 环境科学与生态学
Environmental Science: Processes & Impacts Pub Date : 2024-10-31 DOI: 10.1039/D4EM00143E
Mengya Liu, Xiaochen Liu, Yalu Hu, Qiang Zhang, Usman Farooq, Zhichong Qi and Laotao Lu
{"title":"Mobility of biochar-derived dissolved organic matter and its effects on sulfamerazine transport through saturated soil porous media†","authors":"Mengya Liu, Xiaochen Liu, Yalu Hu, Qiang Zhang, Usman Farooq, Zhichong Qi and Laotao Lu","doi":"10.1039/D4EM00143E","DOIUrl":"10.1039/D4EM00143E","url":null,"abstract":"<p >Dissolved organic matter (DOM) released from biochar may impact antibiotic mobility and environmental fate in subsurface environments. Here, DOM samples derived from biochars (BDOM) generated by pyrolyzing corn straw at 300, 450, and 600 °C were employed to elucidate the mobility characteristics of these organic substances and their influences on the transport of sulfamerazine (SMZ, a typical sulfonamide antibiotic) in soil porous media. The results demonstrated that BDOM produced at a lower pyrolysis temperature exhibited greater mobility owing to the weaker hydrophobic and H-bonding interactions between BDOM and soil particles. Additionally and importantly, BDOM facilitated the promotion of SMZ mobility owing to the increased electrostatic repulsion between SMZ<small><sup>−</sup></small> forms and soil grains, the steric hindrance effect induced by the deposition of organic matter, and the competitive retention between SMZ molecules and BDOM. Meanwhile, the promotion effects of BDOM enhanced with improving pyrolysis temperature owing to the promoted deposition of organic matter on soil surfaces and the strengthened electrostatic repulsion. Moreover, the facilitated effects of BDOM on SMZ mobility declined as the solution pH values were raised from 5.0 to 9.0 or the flow rate increased from 0.18 to 0.51 cm min<small><sup>−1</sup></small>. This trend was due to decreased deposition competition and the steric effect caused by decreased retention of BDOM on soil particles. Furthermore, the cation-bridging effect emerged as an important mechanism contributing to the promotion effects of BDOM when the solution contained divalent cations (Cu<small><sup>2+</sup></small> or Ca<small><sup>2+</sup></small>). Moreover, a two-site non-equilibrium model was used to interpret the controlling mechanisms for the effects of BDOM on the transport of SMZ. Findings from this work highlight that biochar-derived dissolved organic matter can remarkably affect the environmental behaviors of antibiotics in aquatic environments.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 12","pages":" 2264-2278"},"PeriodicalIF":4.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The gas phase ozonolysis and secondary OH production of cashmeran, a musk compound from fragrant volatile chemical products. 从芳香挥发性化学产品中气相臭氧分解和二次羟基生成麝香化合物开士美兰。
IF 4.3 3区 环境科学与生态学
Environmental Science: Processes & Impacts Pub Date : 2024-10-31 DOI: 10.1039/d4em00452c
Ayomide A Akande, Nadine Borduas-Dedekind
{"title":"The gas phase ozonolysis and secondary OH production of cashmeran, a musk compound from fragrant volatile chemical products.","authors":"Ayomide A Akande, Nadine Borduas-Dedekind","doi":"10.1039/d4em00452c","DOIUrl":"10.1039/d4em00452c","url":null,"abstract":"<p><p>Fragrant personal care products are a subset of volatile chemical products (VCPs), an emerging source of outdoor pollutants capable of impacting air quality. Fragrant molecules, such as musks, are used in perfumes and have been found in aquatic organisms, water bodies, indoor air, and urban environments. Considering the distribution of musk-smelling compounds, there is a need to constrain their atmospheric fate indoors and outdoors. Here, we used a Vocus proton-transfer-reaction time-of-flight mass spectrometer to quantify the atmospheric oxidative fate of cashmeran, a bicyclic musk compound, detected in a commercial perfume alongside galaxolide, astratone and rosamusk. Cashmeran concentrations rose up to 0.35 ppbv representing a mass yield of 0.33 ± 0.04% of the perfume. We determined the second order rate constant of the cyclo-addition of O<sub>3</sub> with cashmeran to be (2.78 ± 0.31) × 10<sup>-19</sup> cm<sup>3</sup> molec<sup>-1</sup> s<sup>-1</sup> at 293 ± 1 K in N<sub>2</sub>. This rate constant corresponds to an 85 day lifetime against 20 ppbv of O<sub>3</sub>. Then, we repeated the ozonolysis experiments in air with 20% O<sub>2</sub> and measured significant secondary OH concentrations up to 5.1 × 10<sup>5</sup> molec cm<sup>-3</sup>. Consequently, the lifetime of cashmeran in our experiment was shortened to 5 h. Thus, the oxidation of fragrant molecules, like cashmeran, could alter the oxidative capacity of indoor air <i>via</i> the production of secondary OH radicals. Furthermore, our results show that cashmeran is long-lived and could serve as a VCP tracer in urban air.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leachability of per- and poly-fluoroalkyl substances from contaminated concrete† 受污染混凝土中的全氟烷基和多氟烷基物质的浸出性。
IF 4.3 3区 环境科学与生态学
Environmental Science: Processes & Impacts Pub Date : 2024-10-29 DOI: 10.1039/D4EM00482E
Prashant Srivastava, Grant Douglas, Greg B. Davis, Rai S. Kookana, Canh Tien Trinh Nguyen, Mike Williams, Karl Bowles and Jason K. Kirby
{"title":"Leachability of per- and poly-fluoroalkyl substances from contaminated concrete†","authors":"Prashant Srivastava, Grant Douglas, Greg B. Davis, Rai S. Kookana, Canh Tien Trinh Nguyen, Mike Williams, Karl Bowles and Jason K. Kirby","doi":"10.1039/D4EM00482E","DOIUrl":"10.1039/D4EM00482E","url":null,"abstract":"<p >The historical use and storage of aqueous film-forming foams (AFFF) containing per- and poly-fluoroalkyl substances (PFAS) at a range of sites including airports, defence, and port facilities have resulted in a legacy of contaminated infrastructure such as concrete. Contaminated concrete constitutes an ongoing source of PFAS contamination requiring management to ensure the protection of human health and the environment. In this study, modified Leaching Environmental Assessment Framework (LEAF) and Australian Standard Leaching Procedure (ASLP) were used to examine the leachability of PFAS, specifically, perfluorooctanesulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanesulfonate (PFHxS) and perfluorohexanoic acid (PFHxA) from AFFF-contaminated concrete collected from an Australian Defence Fire Training Area (FTA). In general, PFAS readily leached from intact contaminated concrete monoliths with the cumulative proportion (%) decreasing in the order: PFHxA (&gt;95%) &gt; PFOS (26–84%) ≈ PFHxS (14–78%) &gt; PFOA (&lt;1–54%). Higher leachability for PFHxA from concrete is consistent with previous findings for solids, however, inconsistent for PFOA with higher retention (lower leachability) in concrete as compared to PFOS. Duration of exposure to water (0.5–48 h) and temperature (25 °C and 50 °C) had little influence on the proportion of PFAS leachability from powdered concrete. A higher proportion of PFAS leached from a &lt;2 mm concrete powder size fraction as compared to 2–20 mm and 20 mm size fractions. This behavior reflects an increase in surface area with decreasing concrete particle size. Reducing the particle size could enhance PFAS removal from waste concrete.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 12","pages":" 2227-2239"},"PeriodicalIF":4.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/em/d4em00482e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信