Stochastic partial differential equations : analysis and computations最新文献

筛选
英文 中文
Some approximation results for mild solutions of stochastic fractional order evolution equations driven by Gaussian noise. 高斯噪声驱动下随机分数阶演化方程温和解的一些近似结果。
Stochastic partial differential equations : analysis and computations Pub Date : 2023-01-01 Epub Date: 2022-04-26 DOI: 10.1007/s40072-022-00250-0
K Fahim, E Hausenblas, M Kovács
{"title":"Some approximation results for mild solutions of stochastic fractional order evolution equations driven by Gaussian noise.","authors":"K Fahim,&nbsp;E Hausenblas,&nbsp;M Kovács","doi":"10.1007/s40072-022-00250-0","DOIUrl":"10.1007/s40072-022-00250-0","url":null,"abstract":"<p><p>We investigate the quality of space approximation of a class of stochastic integral equations of convolution type with Gaussian noise. Such equations arise, for example, when considering mild solutions of stochastic fractional order partial differential equations but also when considering mild solutions of classical stochastic partial differential equations. The key requirement for the equations is a smoothing property of the deterministic evolution operator which is typical in parabolic type problems. We show that if one has access to nonsmooth data estimates for the deterministic error operator together with its derivative of a space discretization procedure, then one obtains error estimates in pathwise Hölder norms with rates that can be read off the deterministic error rates. We illustrate the main result by considering a class of stochastic fractional order partial differential equations and space approximations performed by spectral Galerkin methods and finite elements. We also improve an existing result on the stochastic heat equation.</p>","PeriodicalId":74872,"journal":{"name":"Stochastic partial differential equations : analysis and computations","volume":"11 3","pages":"1044-1088"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10404214/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9945355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Well-posedness for a stochastic 2D Euler equation with transport noise. 含传输噪声的随机二维Euler方程的适定性。
Stochastic partial differential equations : analysis and computations Pub Date : 2023-01-01 Epub Date: 2022-01-29 DOI: 10.1007/s40072-021-00233-7
Oana Lang, Dan Crisan
{"title":"Well-posedness for a stochastic 2D Euler equation with transport noise.","authors":"Oana Lang,&nbsp;Dan Crisan","doi":"10.1007/s40072-021-00233-7","DOIUrl":"10.1007/s40072-021-00233-7","url":null,"abstract":"<p><p>We prove the existence of a unique global strong solution for a stochastic two-dimensional Euler vorticity equation for incompressible flows with noise of transport type. In particular, we show that the initial smoothness of the solution is preserved. The arguments are based on approximating the solution of the Euler equation with a family of viscous solutions which is proved to be relatively compact using a tightness criterion by Kurtz.</p>","PeriodicalId":74872,"journal":{"name":"Stochastic partial differential equations : analysis and computations","volume":"11 2","pages":"433-480"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10185632/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9867921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
The hyperbolic Anderson model: moment estimates of the Malliavin derivatives and applications. 双曲安德森模型:马利文导数的矩估计及其应用。
Stochastic partial differential equations : analysis and computations Pub Date : 2022-01-01 Epub Date: 2022-01-18 DOI: 10.1007/s40072-021-00227-5
Raluca M Balan, David Nualart, Lluís Quer-Sardanyons, Guangqu Zheng
{"title":"The hyperbolic Anderson model: moment estimates of the Malliavin derivatives and applications.","authors":"Raluca M Balan,&nbsp;David Nualart,&nbsp;Lluís Quer-Sardanyons,&nbsp;Guangqu Zheng","doi":"10.1007/s40072-021-00227-5","DOIUrl":"https://doi.org/10.1007/s40072-021-00227-5","url":null,"abstract":"<p><p>In this article, we study the hyperbolic Anderson model driven by a space-time <i>colored</i> Gaussian homogeneous noise with spatial dimension <math><mrow><mi>d</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn></mrow> </math> . Under mild assumptions, we provide <math><msup><mi>L</mi> <mi>p</mi></msup> </math> -estimates of the iterated Malliavin derivative of the solution in terms of the fundamental solution of the wave solution. To achieve this goal, we rely heavily on the <i>Wiener chaos expansion</i> of the solution. Our first application are <i>quantitative central limit theorems</i> for spatial averages of the solution to the hyperbolic Anderson model, where the rates of convergence are described by the total variation distance. These quantitative results have been elusive so far due to the temporal correlation of the noise blocking us from using the Itô calculus. A <i>novel</i> ingredient to overcome this difficulty is the <i>second-order Gaussian Poincaré inequality</i> coupled with the application of the aforementioned <math><msup><mi>L</mi> <mi>p</mi></msup> </math> -estimates of the first two Malliavin derivatives. Besides, we provide the corresponding functional central limit theorems. As a second application, we establish the absolute continuity of the law for the hyperbolic Anderson model. The <math><msup><mi>L</mi> <mi>p</mi></msup> </math> -estimates of Malliavin derivatives are crucial ingredients to verify a local version of Bouleau-Hirsch criterion for absolute continuity. Our approach substantially simplifies the arguments for the one-dimensional case, which has been studied in the recent work by [2].</p>","PeriodicalId":74872,"journal":{"name":"Stochastic partial differential equations : analysis and computations","volume":"10 3","pages":"757-827"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9525444/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33488593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Multilevel quadrature for elliptic problems on random domains by the coupling of FEM and BEM. 随机域上椭圆型问题的有限元与边界元耦合多水平求积分。
Stochastic partial differential equations : analysis and computations Pub Date : 2022-01-01 Epub Date: 2021-10-13 DOI: 10.1007/s40072-021-00214-w
Helmut Harbrecht, Marc Schmidlin
{"title":"Multilevel quadrature for elliptic problems on random domains by the coupling of FEM and BEM.","authors":"Helmut Harbrecht,&nbsp;Marc Schmidlin","doi":"10.1007/s40072-021-00214-w","DOIUrl":"https://doi.org/10.1007/s40072-021-00214-w","url":null,"abstract":"<p><p>Elliptic boundary value problems which are posed on a random domain can be mapped to a fixed, nominal domain. The randomness is thus transferred to the diffusion matrix and the loading. While this domain mapping method is quite efficient for theory and practice, since only a single domain discretisation is needed, it also requires the knowledge of the domain mapping. However, in certain applications, the random domain is only described by its random boundary, while the quantity of interest is defined on a fixed, deterministic subdomain. In this setting, it thus becomes necessary to compute a random domain mapping on the whole domain, such that the domain mapping is the identity on the fixed subdomain and maps the boundary of the chosen fixed, nominal domain on to the random boundary. To overcome the necessity of computing such a mapping, we therefore couple the finite element method on the fixed subdomain with the boundary element method on the random boundary. We verify on one hand the regularity of the solution with respect to the random domain mapping required for many multilevel quadrature methods, such as the multilevel quasi-Monte Carlo quadrature using Halton points, the multilevel sparse anisotropic Gauss-Legendre and Clenshaw-Curtis quadratures and multilevel interlaced polynomial lattice rules. On the other hand, we derive the coupling formulation and show by numerical results that the approach is feasible.</p>","PeriodicalId":74872,"journal":{"name":"Stochastic partial differential equations : analysis and computations","volume":"10 4","pages":"1619-1650"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9617976/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40443685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Existence of dynamical low rank approximations for random semi-linear evolutionary equations on the maximal interval. 随机半线性演化方程在极大区间上的动态低秩逼近的存在性。
Stochastic partial differential equations : analysis and computations Pub Date : 2021-01-01 Epub Date: 2020-08-05 DOI: 10.1007/s40072-020-00177-4
Yoshihito Kazashi, Fabio Nobile
{"title":"Existence of dynamical low rank approximations for random semi-linear evolutionary equations on the maximal interval.","authors":"Yoshihito Kazashi,&nbsp;Fabio Nobile","doi":"10.1007/s40072-020-00177-4","DOIUrl":"https://doi.org/10.1007/s40072-020-00177-4","url":null,"abstract":"<p><p>An existence result is presented for the dynamical low rank (DLR) approximation for random semi-linear evolutionary equations. The DLR solution approximates the true solution at each time instant by a linear combination of products of deterministic and stochastic basis functions, both of which evolve over time. A key to our proof is to find a suitable equivalent formulation of the original problem. The so-called Dual Dynamically Orthogonal formulation turns out to be convenient. Based on this formulation, the DLR approximation is recast to an abstract Cauchy problem in a suitable linear space, for which existence and uniqueness of the solution in the maximal interval are established.</p>","PeriodicalId":74872,"journal":{"name":"Stochastic partial differential equations : analysis and computations","volume":"9 3","pages":"603-629"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40072-020-00177-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39732080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
An order approach to SPDEs with antimonotone terms. 具有反单调项的spde的一种有序方法。
Stochastic partial differential equations : analysis and computations Pub Date : 2020-01-01 Epub Date: 2020-01-03 DOI: 10.1007/s40072-019-00161-7
Luca Scarpa, Ulisse Stefanelli
{"title":"An order approach to SPDEs with antimonotone terms.","authors":"Luca Scarpa, Ulisse Stefanelli","doi":"10.1007/s40072-019-00161-7","DOIUrl":"10.1007/s40072-019-00161-7","url":null,"abstract":"<p><p>We consider a class of parabolic stochastic partial differential equations featuring an antimonotone nonlinearity. The existence of unique maximal and minimal variational solutions is proved via a fixed-point argument for nondecreasing mappings in ordered spaces. This relies on the validity of a comparison principle.</p>","PeriodicalId":74872,"journal":{"name":"Stochastic partial differential equations : analysis and computations","volume":"8 4","pages":"819-832"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7661428/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38711719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some results on the penalised nematic liquid crystals driven by multiplicative noise: weak solution and maximum principle 乘性噪声驱动下惩罚向列液晶的一些结果:弱解和极大值原理
Stochastic partial differential equations : analysis and computations Pub Date : 2019-01-24 DOI: 10.1007/s40072-018-0131-z
Z. Brzeźniak, E. Hausenblas, P. Razafimandimby
{"title":"Some results on the penalised nematic liquid crystals driven by multiplicative noise: weak solution and maximum principle","authors":"Z. Brzeźniak, E. Hausenblas, P. Razafimandimby","doi":"10.1007/s40072-018-0131-z","DOIUrl":"https://doi.org/10.1007/s40072-018-0131-z","url":null,"abstract":"","PeriodicalId":74872,"journal":{"name":"Stochastic partial differential equations : analysis and computations","volume":"49 1","pages":"417 - 475"},"PeriodicalIF":0.0,"publicationDate":"2019-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77576755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
Non-stationary phase of the MALA algorithm. 非平稳相位的MALA算法。
Stochastic partial differential equations : analysis and computations Pub Date : 2018-01-01 Epub Date: 2018-04-17 DOI: 10.1007/s40072-018-0113-1
Juan Kuntz, Michela Ottobre, Andrew M Stuart
{"title":"Non-stationary phase of the MALA algorithm.","authors":"Juan Kuntz,&nbsp;Michela Ottobre,&nbsp;Andrew M Stuart","doi":"10.1007/s40072-018-0113-1","DOIUrl":"https://doi.org/10.1007/s40072-018-0113-1","url":null,"abstract":"<p><p>The Metropolis-Adjusted Langevin Algorithm (MALA) is a Markov Chain Monte Carlo method which creates a Markov chain reversible with respect to a given target distribution, <math><msup><mi>π</mi> <mi>N</mi></msup> </math> , with Lebesgue density on <math> <msup><mrow><mi>R</mi></mrow> <mi>N</mi></msup> </math> ; it can hence be used to approximately sample the target distribution. When the dimension <i>N</i> is large a key question is to determine the computational cost of the algorithm as a function of <i>N</i>. The measure of efficiency that we consider in this paper is the <i>expected squared jumping distance</i> (ESJD), introduced in Roberts et al. (Ann Appl Probab 7(1):110-120, 1997). To determine how the cost of the algorithm (in terms of ESJD) increases with dimension <i>N</i>, we adopt the widely used approach of deriving a diffusion limit for the Markov chain produced by the MALA algorithm. We study this problem for a class of target measures which is <i>not</i> in product form and we address the situation of practical relevance in which the algorithm is started out of stationarity. We thereby significantly extend previous works which consider either measures of product form, when the Markov chain is started out of stationarity, or non-product measures (defined via a density with respect to a Gaussian), when the Markov chain is started in stationarity. In order to work in this non-stationary and non-product setting, significant new analysis is required. In particular, our diffusion limit comprises a stochastic PDE coupled to a scalar ordinary differential equation which gives a measure of how far from stationarity the process is. The family of non-product target measures that we consider in this paper are found from discretization of a measure on an infinite dimensional Hilbert space; the discretised measure is defined by its density with respect to a Gaussian random field. The results of this paper demonstrate that, in the non-stationary regime, the cost of the algorithm is of <math><mrow><mi>O</mi> <mo>(</mo> <msup><mi>N</mi> <mrow><mn>1</mn> <mo>/</mo> <mn>2</mn></mrow> </msup> <mo>)</mo></mrow> </math> in contrast to the stationary regime, where it is of <math><mrow><mi>O</mi> <mo>(</mo> <msup><mi>N</mi> <mrow><mn>1</mn> <mo>/</mo> <mn>3</mn></mrow> </msup> <mo>)</mo></mrow> </math> .</p>","PeriodicalId":74872,"journal":{"name":"Stochastic partial differential equations : analysis and computations","volume":"6 3","pages":"446-499"},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40072-018-0113-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37105747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
A pedestrian approach to the invariant Gibbs measures for the 2-d defocusing nonlinear Schrödinger equations. 二维散焦非线性Schrödinger方程不变Gibbs测度的行人方法。
Stochastic partial differential equations : analysis and computations Pub Date : 2018-01-01 Epub Date: 2018-03-26 DOI: 10.1007/s40072-018-0112-2
Tadahiro Oh, Laurent Thomann
{"title":"A pedestrian approach to the invariant Gibbs measures for the 2-<i>d</i> defocusing nonlinear Schrödinger equations.","authors":"Tadahiro Oh,&nbsp;Laurent Thomann","doi":"10.1007/s40072-018-0112-2","DOIUrl":"https://doi.org/10.1007/s40072-018-0112-2","url":null,"abstract":"<p><p>We consider the defocusing nonlinear Schrödinger equations on the two-dimensional compact Riemannian manifold without boundary or a bounded domain in <math> <msup><mrow><mi>R</mi></mrow> <mn>2</mn></msup> </math> . Our aim is to give a pedagogic and self-contained presentation on the Wick renormalization in terms of the Hermite polynomials and the Laguerre polynomials and construct the Gibbs measures corresponding to the Wick ordered Hamiltonian. Then, we construct global-in-time solutions with initial data distributed according to the Gibbs measure and show that the law of the random solutions, at any time, is again given by the Gibbs measure.</p>","PeriodicalId":74872,"journal":{"name":"Stochastic partial differential equations : analysis and computations","volume":"6 3","pages":"397-445"},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40072-018-0112-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36847537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 49
Eikonal equations and pathwise solutions to fully non-linear SPDEs. 全非线性SPDEs的Eikonal方程和路径解。
Stochastic partial differential equations : analysis and computations Pub Date : 2017-01-01 Epub Date: 2016-12-03 DOI: 10.1007/s40072-016-0087-9
Peter K Friz, Paul Gassiat, Pierre-Louis Lions, Panagiotis E Souganidis
{"title":"Eikonal equations and pathwise solutions to fully non-linear SPDEs.","authors":"Peter K Friz,&nbsp;Paul Gassiat,&nbsp;Pierre-Louis Lions,&nbsp;Panagiotis E Souganidis","doi":"10.1007/s40072-016-0087-9","DOIUrl":"https://doi.org/10.1007/s40072-016-0087-9","url":null,"abstract":"<p><p>We study the existence and uniqueness of the stochastic viscosity solutions of fully nonlinear, possibly degenerate, second order stochastic pde with quadratic Hamiltonians associated to a Riemannian geometry. The results are new and extend the class of equations studied so far by the last two authors.</p>","PeriodicalId":74872,"journal":{"name":"Stochastic partial differential equations : analysis and computations","volume":"5 2","pages":"256-277"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40072-016-0087-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37105745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 27
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信