Existence of dynamical low rank approximations for random semi-linear evolutionary equations on the maximal interval.

Yoshihito Kazashi, Fabio Nobile
{"title":"Existence of dynamical low rank approximations for random semi-linear evolutionary equations on the maximal interval.","authors":"Yoshihito Kazashi,&nbsp;Fabio Nobile","doi":"10.1007/s40072-020-00177-4","DOIUrl":null,"url":null,"abstract":"<p><p>An existence result is presented for the dynamical low rank (DLR) approximation for random semi-linear evolutionary equations. The DLR solution approximates the true solution at each time instant by a linear combination of products of deterministic and stochastic basis functions, both of which evolve over time. A key to our proof is to find a suitable equivalent formulation of the original problem. The so-called Dual Dynamically Orthogonal formulation turns out to be convenient. Based on this formulation, the DLR approximation is recast to an abstract Cauchy problem in a suitable linear space, for which existence and uniqueness of the solution in the maximal interval are established.</p>","PeriodicalId":74872,"journal":{"name":"Stochastic partial differential equations : analysis and computations","volume":"9 3","pages":"603-629"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40072-020-00177-4","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic partial differential equations : analysis and computations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40072-020-00177-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/8/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

An existence result is presented for the dynamical low rank (DLR) approximation for random semi-linear evolutionary equations. The DLR solution approximates the true solution at each time instant by a linear combination of products of deterministic and stochastic basis functions, both of which evolve over time. A key to our proof is to find a suitable equivalent formulation of the original problem. The so-called Dual Dynamically Orthogonal formulation turns out to be convenient. Based on this formulation, the DLR approximation is recast to an abstract Cauchy problem in a suitable linear space, for which existence and uniqueness of the solution in the maximal interval are established.

随机半线性演化方程在极大区间上的动态低秩逼近的存在性。
给出了一类随机半线性进化方程的动态低秩逼近的存在性结果。DLR解通过确定性基函数和随机基函数乘积的线性组合近似于每个时刻的真解,两者都随时间而变化。我们证明的关键是找到原问题的合适的等价公式。所谓的对偶动态正交公式证明是方便的。在此基础上,将DLR近似转化为一个合适线性空间中的抽象柯西问题,证明了该问题解在极大区间内的存在唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信