含传输噪声的随机二维Euler方程的适定性。

Oana Lang, Dan Crisan
{"title":"含传输噪声的随机二维Euler方程的适定性。","authors":"Oana Lang,&nbsp;Dan Crisan","doi":"10.1007/s40072-021-00233-7","DOIUrl":null,"url":null,"abstract":"<p><p>We prove the existence of a unique global strong solution for a stochastic two-dimensional Euler vorticity equation for incompressible flows with noise of transport type. In particular, we show that the initial smoothness of the solution is preserved. The arguments are based on approximating the solution of the Euler equation with a family of viscous solutions which is proved to be relatively compact using a tightness criterion by Kurtz.</p>","PeriodicalId":74872,"journal":{"name":"Stochastic partial differential equations : analysis and computations","volume":"11 2","pages":"433-480"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10185632/pdf/","citationCount":"24","resultStr":"{\"title\":\"Well-posedness for a stochastic 2D Euler equation with transport noise.\",\"authors\":\"Oana Lang,&nbsp;Dan Crisan\",\"doi\":\"10.1007/s40072-021-00233-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We prove the existence of a unique global strong solution for a stochastic two-dimensional Euler vorticity equation for incompressible flows with noise of transport type. In particular, we show that the initial smoothness of the solution is preserved. The arguments are based on approximating the solution of the Euler equation with a family of viscous solutions which is proved to be relatively compact using a tightness criterion by Kurtz.</p>\",\"PeriodicalId\":74872,\"journal\":{\"name\":\"Stochastic partial differential equations : analysis and computations\",\"volume\":\"11 2\",\"pages\":\"433-480\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10185632/pdf/\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic partial differential equations : analysis and computations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40072-021-00233-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic partial differential equations : analysis and computations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40072-021-00233-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

我们证明了一个随机二维欧拉-涡度方程在含输运型噪声的不可压缩流中存在唯一的全局强解。特别地,我们证明了解的初始光滑性得到了保留。这些论点是基于用一组粘性解近似欧拉方程的解,该粘性解被Kurtz使用紧密性准则证明是相对紧凑的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Well-posedness for a stochastic 2D Euler equation with transport noise.

We prove the existence of a unique global strong solution for a stochastic two-dimensional Euler vorticity equation for incompressible flows with noise of transport type. In particular, we show that the initial smoothness of the solution is preserved. The arguments are based on approximating the solution of the Euler equation with a family of viscous solutions which is proved to be relatively compact using a tightness criterion by Kurtz.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信