全非线性SPDEs的Eikonal方程和路径解。

Peter K Friz, Paul Gassiat, Pierre-Louis Lions, Panagiotis E Souganidis
{"title":"全非线性SPDEs的Eikonal方程和路径解。","authors":"Peter K Friz,&nbsp;Paul Gassiat,&nbsp;Pierre-Louis Lions,&nbsp;Panagiotis E Souganidis","doi":"10.1007/s40072-016-0087-9","DOIUrl":null,"url":null,"abstract":"<p><p>We study the existence and uniqueness of the stochastic viscosity solutions of fully nonlinear, possibly degenerate, second order stochastic pde with quadratic Hamiltonians associated to a Riemannian geometry. The results are new and extend the class of equations studied so far by the last two authors.</p>","PeriodicalId":74872,"journal":{"name":"Stochastic partial differential equations : analysis and computations","volume":"5 2","pages":"256-277"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40072-016-0087-9","citationCount":"27","resultStr":"{\"title\":\"Eikonal equations and pathwise solutions to fully non-linear SPDEs.\",\"authors\":\"Peter K Friz,&nbsp;Paul Gassiat,&nbsp;Pierre-Louis Lions,&nbsp;Panagiotis E Souganidis\",\"doi\":\"10.1007/s40072-016-0087-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We study the existence and uniqueness of the stochastic viscosity solutions of fully nonlinear, possibly degenerate, second order stochastic pde with quadratic Hamiltonians associated to a Riemannian geometry. The results are new and extend the class of equations studied so far by the last two authors.</p>\",\"PeriodicalId\":74872,\"journal\":{\"name\":\"Stochastic partial differential equations : analysis and computations\",\"volume\":\"5 2\",\"pages\":\"256-277\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40072-016-0087-9\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic partial differential equations : analysis and computations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40072-016-0087-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/12/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic partial differential equations : analysis and computations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40072-016-0087-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/12/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

研究了黎曼几何中具有二次哈密顿算子的全非线性、可能退化的二阶随机偏微分方程的随机黏性解的存在唯一性。这些结果是新的,并且扩展了前两位作者迄今为止所研究的一类方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eikonal equations and pathwise solutions to fully non-linear SPDEs.

We study the existence and uniqueness of the stochastic viscosity solutions of fully nonlinear, possibly degenerate, second order stochastic pde with quadratic Hamiltonians associated to a Riemannian geometry. The results are new and extend the class of equations studied so far by the last two authors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信