Peter K Friz, Paul Gassiat, Pierre-Louis Lions, Panagiotis E Souganidis
{"title":"全非线性SPDEs的Eikonal方程和路径解。","authors":"Peter K Friz, Paul Gassiat, Pierre-Louis Lions, Panagiotis E Souganidis","doi":"10.1007/s40072-016-0087-9","DOIUrl":null,"url":null,"abstract":"<p><p>We study the existence and uniqueness of the stochastic viscosity solutions of fully nonlinear, possibly degenerate, second order stochastic pde with quadratic Hamiltonians associated to a Riemannian geometry. The results are new and extend the class of equations studied so far by the last two authors.</p>","PeriodicalId":74872,"journal":{"name":"Stochastic partial differential equations : analysis and computations","volume":"5 2","pages":"256-277"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40072-016-0087-9","citationCount":"27","resultStr":"{\"title\":\"Eikonal equations and pathwise solutions to fully non-linear SPDEs.\",\"authors\":\"Peter K Friz, Paul Gassiat, Pierre-Louis Lions, Panagiotis E Souganidis\",\"doi\":\"10.1007/s40072-016-0087-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We study the existence and uniqueness of the stochastic viscosity solutions of fully nonlinear, possibly degenerate, second order stochastic pde with quadratic Hamiltonians associated to a Riemannian geometry. The results are new and extend the class of equations studied so far by the last two authors.</p>\",\"PeriodicalId\":74872,\"journal\":{\"name\":\"Stochastic partial differential equations : analysis and computations\",\"volume\":\"5 2\",\"pages\":\"256-277\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40072-016-0087-9\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic partial differential equations : analysis and computations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40072-016-0087-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/12/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic partial differential equations : analysis and computations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40072-016-0087-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/12/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Eikonal equations and pathwise solutions to fully non-linear SPDEs.
We study the existence and uniqueness of the stochastic viscosity solutions of fully nonlinear, possibly degenerate, second order stochastic pde with quadratic Hamiltonians associated to a Riemannian geometry. The results are new and extend the class of equations studied so far by the last two authors.