A pedestrian approach to the invariant Gibbs measures for the 2-d defocusing nonlinear Schrödinger equations.

Tadahiro Oh, Laurent Thomann
{"title":"A pedestrian approach to the invariant Gibbs measures for the 2-<i>d</i> defocusing nonlinear Schrödinger equations.","authors":"Tadahiro Oh,&nbsp;Laurent Thomann","doi":"10.1007/s40072-018-0112-2","DOIUrl":null,"url":null,"abstract":"<p><p>We consider the defocusing nonlinear Schrödinger equations on the two-dimensional compact Riemannian manifold without boundary or a bounded domain in <math> <msup><mrow><mi>R</mi></mrow> <mn>2</mn></msup> </math> . Our aim is to give a pedagogic and self-contained presentation on the Wick renormalization in terms of the Hermite polynomials and the Laguerre polynomials and construct the Gibbs measures corresponding to the Wick ordered Hamiltonian. Then, we construct global-in-time solutions with initial data distributed according to the Gibbs measure and show that the law of the random solutions, at any time, is again given by the Gibbs measure.</p>","PeriodicalId":74872,"journal":{"name":"Stochastic partial differential equations : analysis and computations","volume":"6 3","pages":"397-445"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40072-018-0112-2","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic partial differential equations : analysis and computations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40072-018-0112-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/3/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

We consider the defocusing nonlinear Schrödinger equations on the two-dimensional compact Riemannian manifold without boundary or a bounded domain in R 2 . Our aim is to give a pedagogic and self-contained presentation on the Wick renormalization in terms of the Hermite polynomials and the Laguerre polynomials and construct the Gibbs measures corresponding to the Wick ordered Hamiltonian. Then, we construct global-in-time solutions with initial data distributed according to the Gibbs measure and show that the law of the random solutions, at any time, is again given by the Gibbs measure.

二维散焦非线性Schrödinger方程不变Gibbs测度的行人方法。
考虑二维紧黎曼流形上无边界或有界区域上的非线性Schrödinger方程。我们的目的是在Hermite多项式和Laguerre多项式的基础上给出一个关于Wick重整化的教学和独立的介绍,并构造对应于Wick有序哈密顿量的Gibbs测度。然后,构造了初始数据按Gibbs测度分布的全局实时解,并证明了任意时刻随机解的规律再次由Gibbs测度给出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信