{"title":"Diethyldithiocarbamate-Cu<sub>4</sub>O<sub>3</sub> nanocomplex induced mitochondrial and telomerase dysfunction in non-small cell lung cancer.","authors":"Marwa M Abu-Serie, María A Blasco","doi":"10.1080/17435889.2025.2502321","DOIUrl":"10.1080/17435889.2025.2502321","url":null,"abstract":"<p><strong>Background: </strong>Targeting cancer stem cells (CSCs)-mediated aggressive features of non-small cell lung cancer (NSCLC) is a promising anticancer approach. This can be accomplished via suppressing critical mediators, such as functional mitochondria, aldehyde dehydrogenase (ALDH)1A, and telomere protectors (telomerase reverse transcriptase (TERT) and telomere repeat binding factor (TRF)1).</p><p><strong>Materials & methods: </strong>Copper nanocomplexes (diethyldithiocarbamate (DE)-Cu<sub>4</sub>O<sub>3</sub> nanoparticles (NPs) and DE-Cu NPs) were prepared using the simplest green chemistry method and assessed for inducing mitochondrial dysfunction-dependent non-apoptotic pathway (cuproptosis) and repressing CSC markers.</p><p><strong>Results: </strong>DE-Cu<sub>4</sub>O<sub>3</sub> NPs had higher growth inhibition for NSCLC (A549, H520, and H1299) spheroids than DE-Cu NPs. DE-Cu<sub>4</sub>O<sub>3</sub> NPs had higher uptake rate and prooxidant effect resulting in lower mitochondrial membrane potential and mitochondrial DNA copy number, as well as stronger inhibition of telomerase and ALDH1A than DE-Cu NPs. This caused dramatic redox imbalance and lowering AKT pathway (activator of telomere stabilizers and stemness)-mediated repression of TERT and TRF1 protein levels as well as phosphorylated NF-κB subunit (p65) led to collapsing telomeres, as evidenced by downregulating TERT regulators and confocal microscopy. In animal study, this active nanocomplex revealed powerful and selective therapeutic tumor-targeting effects, with no evidence of toxicity to healthy tissues.</p><p><strong>Conclusion: </strong>DE-Cu<sub>4</sub>O<sub>3</sub> nanocomplex is deemed as promising nanomedicine for NSCLC.</p>","PeriodicalId":74240,"journal":{"name":"Nanomedicine (London, England)","volume":" ","pages":"1267-1280"},"PeriodicalIF":0.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140473/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144082604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laura P Rebolledo, Luciana N S Andrade, Marcio C Bajgelman, Lawrence Banks, Xandra O Breakefield, Marina A Dobrovolskaia, Nikolay V Dokholyan, Edna T Kimura, Luisa Villa, Luiz F Zerbini, Valtencir Zucolotto, Kirill A Afonin, Bryan E Strauss, Roger Chammas, Renata de Freitas Saito
{"title":"Nucleic acid nanobiosystems for cancer theranostics: an overview of emerging trends and challenges.","authors":"Laura P Rebolledo, Luciana N S Andrade, Marcio C Bajgelman, Lawrence Banks, Xandra O Breakefield, Marina A Dobrovolskaia, Nikolay V Dokholyan, Edna T Kimura, Luisa Villa, Luiz F Zerbini, Valtencir Zucolotto, Kirill A Afonin, Bryan E Strauss, Roger Chammas, Renata de Freitas Saito","doi":"10.1080/17435889.2025.2501919","DOIUrl":"10.1080/17435889.2025.2501919","url":null,"abstract":"<p><p>Different cancers remain major global health challenges due to their diverse biological behaviors and significant treatment hurdles. The aging of populations and lifestyle factors increase cancer occurrence and place increasing pressure on healthcare systems. Despite continuous advancements, many cancers remain fatal due to late-stage diagnosis, tumor heterogeneity, and drug resistance, thus necessitating urgent development of innovative treatment solutions. Therapeutic nucleic acids, a new class of biological drugs, offer a promising approach to overcoming these challenges. The recent Nucleic Acids and Nanobiosystems in Cancer Theranostics (NANCT) conference brought together internationally recognized experts from 15 countries to discuss cutting-edge research, spanning from oncolytic viruses to anticancer RNA nanoparticles and other emerging nanotechnologies. This review captures key insights and developments, emphasizing the need for interdisciplinary translation of scientific advancements into clinical practice and shaping the future of personalized cancer treatments for improved therapeutic outcomes.</p>","PeriodicalId":74240,"journal":{"name":"Nanomedicine (London, England)","volume":" ","pages":"1281-1298"},"PeriodicalIF":0.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140469/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143999865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gui Wan, Lingui Gu, Yangyang Chen, Yiqing Wang, Ye Sun, Zhenwei Li, Wenbin Ma, Xinjie Bao, Renzhi Wang
{"title":"Nanobiotechnologies for stroke treatment.","authors":"Gui Wan, Lingui Gu, Yangyang Chen, Yiqing Wang, Ye Sun, Zhenwei Li, Wenbin Ma, Xinjie Bao, Renzhi Wang","doi":"10.1080/17435889.2025.2501514","DOIUrl":"10.1080/17435889.2025.2501514","url":null,"abstract":"<p><p>Stroke has brought about a poor quality of life for patients and a substantial societal burden with high morbidity and mortality. Thus, the efficient stroke treatment has always been the hot topic in the research of medicine. In the past decades, nanobiotechnologies, including natural exosomes and artificial nanomaterials, have been a focus of attention for stroke treatment due to their inherent advantages, such as facile blood - brain barrier traversal and high drug encapsulation efficiency. Recently, thanks to the rapid development of nanobiotechnologies, more and more efforts have been made to study the therapeutic effects of exosomes and artificial nanomaterials as well as relevant mechanisms in stroke treatment. Herein, from recent studies and articles, the application of natural exosomes and artificial nanomaterials in stroke treatment are summarized. And their prospects of clinical translation and future development are also discussed in further detail.</p>","PeriodicalId":74240,"journal":{"name":"Nanomedicine (London, England)","volume":" ","pages":"1299-1319"},"PeriodicalIF":0.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140470/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144014664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leonardo Delello Di Filippo, Jonatas Lobato Duarte, Allana Carolina Leme de Almeida, Felipe Mota Tashiro, Isabel Rheinfranck Peleje, Marlus Chorilli
{"title":"A drug delivery perspective on nanotechnology-based topical therapeutics for inflammatory skin diseases.","authors":"Leonardo Delello Di Filippo, Jonatas Lobato Duarte, Allana Carolina Leme de Almeida, Felipe Mota Tashiro, Isabel Rheinfranck Peleje, Marlus Chorilli","doi":"10.1080/17435889.2025.2506347","DOIUrl":"10.1080/17435889.2025.2506347","url":null,"abstract":"<p><p>Inflammatory skin diseases are chronic conditions that significantly affect patients' skin health and quality of life. Traditional treatments, including systemic immunosuppressants and topical therapies, often face limitations such as low efficacy, inadequate skin penetration, and severe side effects. Nanotechnology has emerged as a promising solution to tackle these challenges by providing innovative drug delivery systems that not only enhance therapeutic precision but also reduce systemic exposure. This review highlights the technological innovations and pre-clinical potential of nanotechnology-based therapies in managing inflammatory skin diseases, emphasizing their advantages over conventional treatments and their ability to overcome existing therapeutic limitations. Drug delivery nanosystems like lipid, polymeric, and metallic nanocarriers can be designed to penetrate the skin barrier and deliver drugs directly to the affected tissues. These nanocarriers improve drug stability, bioavailability, and retention in target areas while minimizing adverse effects. Furthermore, nanoparticles can be functionalized with bioadhesive molecules (e.g. hyaluronic acid) to achieve targeted and sustained drug release. In preclinical studies, such advanced formulations have demonstrated the potential to modulate immune responses and reduce inflammation by delivering therapeutics in a controlled and localized manner.</p>","PeriodicalId":74240,"journal":{"name":"Nanomedicine (London, England)","volume":" ","pages":"1441-1459"},"PeriodicalIF":0.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12143682/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144144779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ada Tushe, Elena Marinelli, Beatrice Musca, Annavera Ventura, Sara Zumerle, Olga Slukinova, Giulia Zampardi, Francesco Volpin, Camilla Bonaudo, Alessandro Della Puppa, Mathieu Repellin, Giulia Guerriero, Giovanna Lollo, Susanna Mandruzzato
{"title":"Drug-loaded nanoparticles induce immunogenic cell death and efficiently target cells from glioblastoma patients.","authors":"Ada Tushe, Elena Marinelli, Beatrice Musca, Annavera Ventura, Sara Zumerle, Olga Slukinova, Giulia Zampardi, Francesco Volpin, Camilla Bonaudo, Alessandro Della Puppa, Mathieu Repellin, Giulia Guerriero, Giovanna Lollo, Susanna Mandruzzato","doi":"10.1080/17435889.2025.2497747","DOIUrl":"10.1080/17435889.2025.2497747","url":null,"abstract":"<p><strong>Aim: </strong>Glioblastoma multiforme (GBM) is characterized by a highly immunosuppressive tumor microenvironment (TME), posing significant challenges for efficient therapy's outcomes. Nanomedicine combined with immunotherapy holds the potential to modulate the TME and reactivate immune responses. This study proposes a polymeric nanosystem (NPs) encapsulating diaminocyclohexane-platinum II (DACHPt), an oxaliplatin derivative, to induce immunogenic cell death (ICD) in GBM cells.</p><p><strong>Materials & methods: </strong>An ionic-gelation technique was employed to generate polymeric nanoparticles (NPs) with an approximate size of 200 nm. NPs internalization was analyzed in GBM cell lines, <i>in</i> <i>vitro</i>-derived macrophages, and in leukocytes and tumor cells from GBM patient via flow cytometry and confocal imaging. ICD was assessed by measuring two of its main markers: adenosine triphosphate (ATP) and high-mobility group box 1 (HMGB1).</p><p><strong>Results: </strong>NPs were efficiently incorporated by myeloid and tumor cells, but not by lymphocytes. DACHPt-loaded NPs demonstrated enhanced cytotoxicity compared to free drug, with increased ATP and HMGB1 release from GBM cells, confirming ICD induction.</p><p><strong>Conclusions: </strong>Our findings suggest that DACHPt-loaded NPs represent a promising therapeutic strategy capable of targeting both tumor cells and tumor-promoting immune cells while inducing ICD.</p>","PeriodicalId":74240,"journal":{"name":"Nanomedicine (London, England)","volume":" ","pages":"1223-1234"},"PeriodicalIF":0.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140489/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144058141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The potential of erythrocyte-mimic nanoparticles in the treatment of cardiovascular diseases.","authors":"Ni Zhu, Jing Yang","doi":"10.1080/17435889.2025.2485674","DOIUrl":"10.1080/17435889.2025.2485674","url":null,"abstract":"","PeriodicalId":74240,"journal":{"name":"Nanomedicine (London, England)","volume":" ","pages":"1381-1383"},"PeriodicalIF":0.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12143672/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143756414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
André F Moreira, Hugo A L Filipe, Sónia P Miguel, Maximiano J Ribeiro, Paula Coutinho
{"title":"Recent advances in smart gold nanoparticles for photothermal therapy.","authors":"André F Moreira, Hugo A L Filipe, Sónia P Miguel, Maximiano J Ribeiro, Paula Coutinho","doi":"10.1080/17435889.2025.2500912","DOIUrl":"10.1080/17435889.2025.2500912","url":null,"abstract":"<p><p>Gold nanoparticles (AuNPs) possess unique properties, including low toxicity and excellent optical characteristics, making them highly appealing for biomedical applications. The plasmonic photothermal effect of AuNPs has been explored to trigger localized hyperthermia. Four commonly explored gold nanoparticles (spheres, rods, stars, and cages) are produced and optimized to present the localized surface plasmon resonance effect in the near-infrared region, exploiting the increased penetration in the human body. Additionally, the production of hybrid AuNPs, combining them with other materials, such as silica, graphene, zinc oxide, polymers, and small molecules has been explored to amplify the photothermal effect (<i>T</i> ≥ 45ºC). This review provides an overview of AuNPs' application in photothermal therapy, describing the general synthesis processes and the main particle parameters that affect their application in photothermal therapy, including the hybrid nanomaterials. Associated with this rapid progress, surface functionalization can also improve colloidal stability, safety, and therapeutic outcomes. In this regard, we also highlight the emerging trend of applying cell-derived vesicles as biomimetic coatings, capable of evading immune recognition, increasing blood circulation, and targeting specific tissues. In addition, the challenges and future developments of AuNPs for accelerating the clinical translations are discussed in light of their therapeutic and theragnostic potential.</p>","PeriodicalId":74240,"journal":{"name":"Nanomedicine (London, England)","volume":" ","pages":"1339-1353"},"PeriodicalIF":0.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140457/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143999868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}