Shuai Yuan, Yuhao Sun, Jie Chen, Pranav Sharma, Michael G. Levin, Susanna Larsson, Scott M. Damrauer
{"title":"Associations of Genetic and Lifestyle Risk Factors With Incident Peripheral Artery Disease: A Prospective Cohort Study","authors":"Shuai Yuan, Yuhao Sun, Jie Chen, Pranav Sharma, Michael G. Levin, Susanna Larsson, Scott M. Damrauer","doi":"10.1016/j.jvssci.2024.100258","DOIUrl":"10.1016/j.jvssci.2024.100258","url":null,"abstract":"","PeriodicalId":74035,"journal":{"name":"JVS-vascular science","volume":"5 ","pages":"Article 100258"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143151962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Steven R. Botts, Kristen Schulz, Corey A. Scipione, Sneha Raju, Leandro C. Breda, Kamalben Prajapati, Kai Yu, Aniqa Khan, Chanele K. Polenz, Sharon J. Hyduk, Joshua D. Wythe, Clint S. Robbins, Myron I. Cybulsky, Jason E. Fish, Kathryn L. Howe
{"title":"Loss of the ETS Transcription Factor ERG Disrupts Fate-defining Programs in the Aortic Endothelium and Promotes Expansion of Endothelial Lineage Cells in Atherosclerotic Plaque","authors":"Steven R. Botts, Kristen Schulz, Corey A. Scipione, Sneha Raju, Leandro C. Breda, Kamalben Prajapati, Kai Yu, Aniqa Khan, Chanele K. Polenz, Sharon J. Hyduk, Joshua D. Wythe, Clint S. Robbins, Myron I. Cybulsky, Jason E. Fish, Kathryn L. Howe","doi":"10.1016/j.jvssci.2024.100239","DOIUrl":"10.1016/j.jvssci.2024.100239","url":null,"abstract":"","PeriodicalId":74035,"journal":{"name":"JVS-vascular science","volume":"5 ","pages":"Article 100239"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143153071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jean Sénémaud MD, PhD , Charles Skarbek PhD , Belen Hernandez PhD , Ran Song PhD , Isabelle Lefevre PhD , Elisabetta Bianchi PhD , Yves Castier MD, PhD , Antonino Nicoletti PhD , Christophe Bureau PhD , Giuseppina Caligiuri MD, PhD
{"title":"Camouflaging endovascular stents with an endothelial coat using CD31 domain 1 and 2 mimetic peptides","authors":"Jean Sénémaud MD, PhD , Charles Skarbek PhD , Belen Hernandez PhD , Ran Song PhD , Isabelle Lefevre PhD , Elisabetta Bianchi PhD , Yves Castier MD, PhD , Antonino Nicoletti PhD , Christophe Bureau PhD , Giuseppina Caligiuri MD, PhD","doi":"10.1016/j.jvssci.2024.100213","DOIUrl":"10.1016/j.jvssci.2024.100213","url":null,"abstract":"<div><h3>Objective</h3><p>Implantation of an endovascular device disrupts the homeostatic CD31:CD31 interactions among quiescent endothelial cells (ECs), platelets, and circulating leukocytes. The aim of this study was to design an endothelial-mimetic coating of nitinol and cobalt-chromium (CoCr) surfaces and stents using synthetic CD31 peptides, to promote device endothelialization and pacific integration within the arterial wall.</p></div><div><h3>Methods</h3><p>Peptides mimicking the domains 1 (D1) and 2 (D2) of CD31 were synthetized and immobilized onto experimental nitinol and CoCr surfaces using a three-step, dip-coating, mussel-inspired protocol using copper-free click chemistry. Human aortic EC phenotype and endothelialization assessment using parallel scratch tests were carried out using five synthetic CD31 peptides coated on 4.8-mm nitinol and CoCr flat disks and were compared with control disks. The CD31 peptide exhibiting the best results in vitro was then immobilized on clinical-grade 3 × 40-mm self-expanding nitinol and 2.5 × 20.0-mm balloon-expandable CoCr stents. Such devices were implanted in native arteries of White New Zealand rabbits, and compared with control uncoated bare metal stents (BMS) and drug-eluting stents 7 and 30 days after implantation using resin cross-sections and scanning electron microscopy (n = 2-3 per group at each time point).</p></div><div><h3>Results</h3><p>Membrane-distal CD31 D1 and D2 peptides exhibited a distinct capability to foster a healthy endothelial phenotype and to promote endothelialization in vitro. By day 7 after implantation, CD31 nitinol and CoCr stents were evenly covered by wholesome ECs, devoid of thromboinflammatory signs, in contrast with both BMS and drug-eluting stents. Such results were consistent until day 30.</p></div><div><h3>Conclusions</h3><p>Membrane-distal CD31 biomimetic peptides seem to camouflage the device surface effectively, preventing local reactions and promoting rapid and seamless endovascular integration.</p></div>","PeriodicalId":74035,"journal":{"name":"JVS-vascular science","volume":"5 ","pages":"Article 100213"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666350324000245/pdfft?md5=586568decde158b644a6988f3b5e2f40&pid=1-s2.0-S2666350324000245-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141851075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In vitro analysis of carotid lesions using a preliminary microwave sensor to detect vulnerable plaques: Correlation with histology, Duplex ultrasound examination, and computed tomography scanner: The Imaging and Microwave Phenotyping Assessment of Carotid stenosis Threat (IMPACT) study","authors":"Rania Shahbaz PhD , Etienne Charpentier MD , Maharajah Ponnaiah PhD , Frédérique Deshours PhD , Hamid Kokabi PhD , Isabelle Brochériou MD, PhD , Gilles Le Naour PhD , Alban Redheuil MD, PhD , Fabien Koskas MD, PhD , Jean-Michel Davaine MD, PhD","doi":"10.1016/j.jvssci.2023.100182","DOIUrl":"10.1016/j.jvssci.2023.100182","url":null,"abstract":"<div><h3>Objective</h3><p>Progress in best medical treatment have made identification of best candidates for carotid surgery more difficult. New diagnostic modalities could be helpful in this perspective. Microwaves (MWs) can quantify dielectric properties (complex relative permittivity) of biological tissues and MW technology has emerged as a promising field of research for distinguishing abnormal tissues from healthy ones. We here evaluated the ability of a dedicated MW sensor developed in our laboratory to identify vulnerable carotid lesions.</p></div><div><h3>Methods</h3><p>We included 50 carotid lesions in this study. The plaques were analyzed and classified preoperatively by ultrasound (US) examination, computed tomography angiography and tested postoperatively using a MW sensor. Histopathological analysis was used as a gold standard to separate vulnerable plaques (VPs) from nonvulnerable plaques (NVPs).</p></div><div><h3>Results</h3><p>VPs were more frequently types 2 or 3 plaques (on US examination), had a greater proportion of low (<60 Hounsfield unit) and moderate (60-130 Hounsfield unit) attenuation components (computed tomography angiography) and displayed higher dielectric constant values (MW) than NVPs, which had an opposite profile. NVPs were more frequently asymptomatic plaques compared with VPs (<em>P</em> = .035). Multivariate analysis showed that US examination and MW identified VPs with a sensitivity of 77% and a specificity of 76% (cutoff value, –0.045; area under the curve, 0.848; <em>P</em> < .0001).</p></div><div><h3>Conclusions</h3><p>We found that the presence of types 2 to 3 (on US examination) and high dielectric constant plaques in vitro was highly indicative of a VP based on histological analysis. Further studies are needed to determine the potential of MW to identify the most dangerous asymptomatic carotid lesions.</p></div>","PeriodicalId":74035,"journal":{"name":"JVS-vascular science","volume":"5 ","pages":"Article 100182"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266635032300086X/pdfft?md5=afffd8fbb14ab1c4a89531bcf8ce250b&pid=1-s2.0-S266635032300086X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138992631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}