Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology最新文献

筛选
英文 中文
Modafinil Ameliorated Fibromyalgia Syndrome in Rats by Modulating Mast Cells and Microglia Activation Through Dopamine/Substance P/MRGPRX/Histamine and PI3K/p-Akt/NF-κB Signaling Pathways. 莫达非尼通过多巴胺/ P物质/MRGPRX/组胺和PI3K/ P - akt /NF-κB信号通路调节肥大细胞和小胶质细胞活化,改善大鼠纤维肌痛综合征
IF 6.2
Mennat-Allah M Kamal, Reham M Essam, Noha F Abdelkader, Hala F Zaki
{"title":"Modafinil Ameliorated Fibromyalgia Syndrome in Rats by Modulating Mast Cells and Microglia Activation Through Dopamine/Substance P/MRGPRX/Histamine and PI3K/p-Akt/NF-κB Signaling Pathways.","authors":"Mennat-Allah M Kamal, Reham M Essam, Noha F Abdelkader, Hala F Zaki","doi":"10.1007/s11481-025-10194-6","DOIUrl":"https://doi.org/10.1007/s11481-025-10194-6","url":null,"abstract":"<p><p>Fibromyalgia syndrome (FMS) is characterized by prolonged, widespread musculoskeletal pain accompanied by various physical and psychological disturbances. Modafinil, a wake-promoting drug, manages pain symptoms in several diseases by inhibiting dopamine reuptake and exhibiting anti-inflammatory and immunomodulatory effects, including the impairment of cytokine production, microglia, and mast cell activation. Central inflammation may involve microglial activation, which is correlated with mast cell activation. Restoring dopamine levels and modulating the communication between mast cells and microglia may represent a promising approach to managing pain symptoms in FMS. Thus, this study intended to explore the interplay between brain mast cells and microglia as an underlying mechanism in the pathophysiology of FMS and how this interaction is controlled by modafinil, with a focus on dopamine/SP/MRGPRX2/histamine and PI3K/p-Akt/NF-κB signaling pathways. Rats were arbitrarily distributed between 4 groups. Group 1 served as normal control. Reserpine (1 mg/kg/day; s.c) was injected into the remaining groups for three consecutive days. In groups 3 and 4, modafinil (100 mg/kg/day; p.o) was administered either alone or in conjunction with haloperidol (1 mg/kg/day; ip), respectively, for the following 21 days. Modafinil ameliorated reserpine-induced thermal/mechanical allodynia (1.3-fold, 2.3-fold) and hyperalgesia (0.5-fold), attenuated depression (0.5-fold), and enhanced motor coordination (1.2-fold). It mitigated the histopathological alterations and increased dopamine levels in the thalamus of rats by 88.5%. Modafinil displayed anti-inflammatory effects via inhibiting mast cells and microglia activation, manifested by reductions in SP/MRGPRX2/IL-17/histamine (52%, 58%, 56.7%, and 63.7%) and PI3K/p-Akt/t-Akt/NF-κB/TNF-α/IL-6 (31.7%, 55.5%, 41%, 47.6%, and 76.9%), respectively. Ultimately, modafinil alleviated FMS behavioral, histopathological, and biochemical abnormalities and suppressed mast cell-microglial neuroinflammation in the thalamus of rats exposed to reserpine. This study highlights the potential of repurposing modafinil to improve FMS symptoms.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":"20 1","pages":"38"},"PeriodicalIF":6.2,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12000277/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143999794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental autoimmune encephalomyelitis pathogenesis alters along animal age: impact of S100B expression. 实验性自身免疫性脑脊髓炎发病机制随动物年龄变化:S100B表达的影响
IF 6.2
Ana Rita Ribeiro, Raquel Pereira, Catarina Barros, Andreia Barateiro, Ainhoa Alberro, Afonso P Basto, Luís Graça, Maria Vaz Pinto, Fábio M F Santos, Pedro M P Gois, Susan E Howlett, Adelaide Fernandes
{"title":"Experimental autoimmune encephalomyelitis pathogenesis alters along animal age: impact of S100B expression.","authors":"Ana Rita Ribeiro, Raquel Pereira, Catarina Barros, Andreia Barateiro, Ainhoa Alberro, Afonso P Basto, Luís Graça, Maria Vaz Pinto, Fábio M F Santos, Pedro M P Gois, Susan E Howlett, Adelaide Fernandes","doi":"10.1007/s11481-025-10195-5","DOIUrl":"https://doi.org/10.1007/s11481-025-10195-5","url":null,"abstract":"<p><p>Multiple Sclerosis (MS) is the leading inflammatory and non-traumatic cause of disability in young adults, with late-onset MS emerging in middle-aged patients often resulting in poorer treatment responses and worse prognoses. The calcium-binding protein S100B is elevated in MS patients, and its targeting has shown promise in reducing disease severity in experimental autoimmune encephalomyelitis (EAE) models. However, most studies on MS pathology have focused on young animal models, leaving a gap in understanding the effects of age and S100B ablation on disease progression throughout the lifespan. This study aimed to characterize EAE in mice of different ages, examining demyelination, inflammation, and immune responses to determine whether S100B ablation could mitigate MS pathogenesis across the lifespan. EAE was induced in six cohorts of C57BL/6 mice: young adults (3 months), older adults (6 months), and middle-aged (12 months), including corresponding S100B knockout (KO) groups, followed for 23 days. Upon sacrifice, spinal cords were assessed via immunohistochemistry and Real-Time qPCR, while splenocytes were analyzed for immune cell characterization. Results indicated a more severe disease course in 12-month-old mice, marked by increased gliosis, inflammation, and impaired microglial phagocytic activity. Notably, S100B absence reduced gliosis and inflammatory markers across all ages, with 12-month-old S100B KO mice showing increased regulatory T cells. These findings highlight the exacerbating role of age and elevated S100B in MS progression, underscoring the importance of identifying age-specific MS markers and therapeutic targets.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":"20 1","pages":"37"},"PeriodicalIF":6.2,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11997003/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144009091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antioxidant-Effective Quercetin Through Modulation of Brain Interleukin-13 Mitigates Autistic-Like Behaviors in the Propionic Acid-Induced Autism Model in Rats. 抗氧化剂槲皮素通过调节脑白介素-13减轻丙酸诱导的大鼠自闭症模型中的自闭症样行为。
IF 6.2
Kubilay Doğan Kılıç, Gökçen Garipoğlu, Burak Çakar, Yiğit Uyanıkgil, Oytun Erbaş
{"title":"Antioxidant-Effective Quercetin Through Modulation of Brain Interleukin-13 Mitigates Autistic-Like Behaviors in the Propionic Acid-Induced Autism Model in Rats.","authors":"Kubilay Doğan Kılıç, Gökçen Garipoğlu, Burak Çakar, Yiğit Uyanıkgil, Oytun Erbaş","doi":"10.1007/s11481-025-10190-w","DOIUrl":"https://doi.org/10.1007/s11481-025-10190-w","url":null,"abstract":"<p><p>Overproduction of reactive oxygen species occurs when inflammation induces oxidative stress in macrophages and microglia, leading to a self-sustaining cycle of cellular damage and neuroinflammation. Oxidative stress and neuroinflammation are well-established contributors to the pathophysiology of autism spectrum disorders, which are associated with impaired neuronal function, neuronal loss, and behavioral deficits. Damaged cells, through microglial activation, release additional inflammatory mediators under conditions of oxidative stress, exacerbating neuronal damage. Quercetin, a powerful dietary antioxidant, has been shown to scavenge free radicals, reduce oxidative stress, and inhibit inflammatory pathways. Given these properties, we hypothesize that quercetin may improve learning and social skills in individuals with autism spectrum disorders by alleviating oxidative stress and reducing brain levels of inflammatory cytokines. In this study, an autism model was established in 30 rats by intraperitoneal injection of 250 mg/kg/day propionic acid (PPA) for five days. The study groups were as follows: Group 1: Normal ontrol (n = 10); Group 2: PPA + saline (PPAS, n = 10); Group 3: PPA + Quercetin (PPAQ, n = 10). All treatments were administered for 15 days. At the end of the treatment, histological and biochemical analyses of brain tissue and behavioral tests related to autistic-like behaviors were performed. Malondialdehyde, tumor necrosis factor-alpha, and interleukin-13 levels in brain homogenates were significantly higher in the PPAS group compared to the control group, indicating elevated oxidative stress and inflammation following PPA exposure. The PPAQ group significantly reduced oxidative stress parameters and inflammatory biomarkers, demonstrating its antioxidant and anti-inflammatory effects. This biochemical improvement was accompanied by preserving Purkinje cells and neuronal populations, significantly reduced in the PPAS group. Moreover, quercetin-treated rats exhibited improved social behavior and learning, which were severely impaired in the PPAS group. These findings, when interpreted together, suggest that quercetin exerts its neuroprotective effects by targeting oxidative stress and neuroinflammation, thereby preventing neuronal cell loss and alleviating behavioral deficits associated with autism spectrum disorders.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":"20 1","pages":"36"},"PeriodicalIF":6.2,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11993503/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144054796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Yi-Nao-Jie-Yu Prescription Relieves Post-Stroke Depression by Mitigating Ferroptosis in Hippocampal Neurons Via Activating the Nrf2/GPX4/SLC7A11 Pathway. 脑脑解郁方通过激活Nrf2/GPX4/SLC7A11通路缓解脑卒中后抑郁
IF 6.2
Yuan Zhang, Qisheng Tang, Jin Yao, Hongwei Liu, Changmin Xu, Zechun Guo, Shuqing Liu, Ruizhen Zhao
{"title":"Yi-Nao-Jie-Yu Prescription Relieves Post-Stroke Depression by Mitigating Ferroptosis in Hippocampal Neurons Via Activating the Nrf2/GPX4/SLC7A11 Pathway.","authors":"Yuan Zhang, Qisheng Tang, Jin Yao, Hongwei Liu, Changmin Xu, Zechun Guo, Shuqing Liu, Ruizhen Zhao","doi":"10.1007/s11481-024-10167-1","DOIUrl":"https://doi.org/10.1007/s11481-024-10167-1","url":null,"abstract":"<p><p>Post-stroke depression (PSD) poses a serious impact on patients' life quality. Effective drugs to treat this annoying disease are still being sought. Yi-nao-jie-yu (YNJY) prescription has been found to relieve PSD; however, the underlying mechanisms remain unelucidated. This work elucidated the therapeutic effects and mechanisms underlying YNJY prescription in PSD. PSD rat model was treated with YNJY prescription and ML385. Depression-like behaviors of rats was appraised. Hematoxylin-eosin, Nissl, and NeuN immunofluorescence staining were performed to observe hippocampal neuronal damage. Transmission electron microscopy was used to assess hippocampal mitochondrial damage. Commercial kits and western blotting were adopted to research ferroptosis-related factors and Nrf2/GPX4/SLC7A11 signals. In vitro experiments were performed using rat hippocampal neurons to explore the mechanism by which YNJY prescription relieves PSD. In PSD rats, YNJY prescription relieved depression-like behaviors, attenuated hippocampal neuronal damage, mitigated hippocampal ferroptosis and mitochondrial damage, and activated hippocampal Nrf2/GPX4/SLC7A11 pathway. By in vitro experiments, erastin treatment exacerbated hippocampal neuronal damage, ferroptosis, mitochondrial damage, and lipid peroxidation; however, YNJY prescription abolished these erastin-induced effects. In the erastin-treated hippocampal neuronal model of PSD, ML385 treatment increased ferroptosis, hippocampal neuronal damage, and lipid peroxidation; however, YNJY prescription counteracted these ML385-induced effects. By in vivo study, ML385 reversed the relief of YNJY prescription on depressive-like behaviors of PSD rats, and the inhibition on ferroptosis in PSD rats' hippocampus. YNJY prescription relieves PSD by blocking ferroptosis via activating the Nrf2/GPX4/SLC7A11 pathway. It may be a promising agent for treating PSD clinically.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":"20 1","pages":"35"},"PeriodicalIF":6.2,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11991945/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144036615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Irisin Regulates Microglia M1/M2 Polarization and Promotes Autophagy Through the Sirt3 Pathway to Alleviate POCD. 鸢尾素通过Sirt3通路调控小胶质细胞M1/M2极化促进自噬减轻POCD
IF 6.2
Chenglong Li, Yushuang Cong, Wanying Song, Yujin Wu, Xi Gou, Sihua Qi
{"title":"Irisin Regulates Microglia M1/M2 Polarization and Promotes Autophagy Through the Sirt3 Pathway to Alleviate POCD.","authors":"Chenglong Li, Yushuang Cong, Wanying Song, Yujin Wu, Xi Gou, Sihua Qi","doi":"10.1007/s11481-025-10201-w","DOIUrl":"https://doi.org/10.1007/s11481-025-10201-w","url":null,"abstract":"<p><p>Cognitive impairment following surgical procedures, termed postoperative cognitive dysfunction (POCD), is a significant complication affecting the central nervous system. This condition stems from the combined impacts of anesthesia and surgical intervention, with microglial-induced neuroinflammation identified as the primary pathological mechanism. Irisin, a recently identified hormone released during physical exercise, has shown remarkable anti-inflammatory and neuroprotective properties, largely through its ability to modulate microglial activation in various central nervous system disorders. In this study, we explored the protective effects of irisin and its underlying mechanisms in a mouse model of POCD and BV2 microglial cells. Our results demonstrated that irisin effectively mitigated hippocampal-dependent cognitive deficits in mice subjected to exploratory laparotomy. Additionally, irisin facilitated the phenotypic shift of microglia from the pro-inflammatory M1 state to the anti-inflammatory and reparative M2 state. Furthermore, irisin upregulated the expression of Sirt3 in the postoperative hippocampus of mice. Importantly, pharmacological inhibition of Sirt3 activity using 3-TYP nullified the neuroprotective effects of irisin. In vitro studies revealed that irisin increased the expression of Sirt3 and autophagy-related proteins in lipopolysaccharide-activated BV2 microglial cells. Notably, Sirt3 knockout impeded irisin-induced autophagy enhancement and inhibited the polarization of microglia toward the M2 phenotype. Collectively, these findings highlight irisin's ability to attenuate POCD by driving the phenotypic transition of microglia from M1 to M2 through a mechanism involving Sirt3-mediated autophagy. This novel pathway underscores the therapeutic potential of irisin as a promising candidate for managing POCD.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":"20 1","pages":"34"},"PeriodicalIF":6.2,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144043262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
( +)-Catechin Alleviates CCI-Induced Neuropathic Pain by Modulating Microglia M1 and M2 Polarization via the TLR4/MyD88/NF-κB Signaling Pathway. (+)-儿茶素通过TLR4/MyD88/NF-κB信号通路调节小胶质细胞M1和M2极化减轻cci诱导的神经性疼痛
IF 6.2
Bei Jing, Jia-Ji Zhao, Zhen-Ni Chen, Wai-Mei Si, Shi-Quan Chang, Ya-Chun Zheng, Zi-Feng Zhuang, Guo-Ping Zhao, Di Zhang
{"title":"( +)-Catechin Alleviates CCI-Induced Neuropathic Pain by Modulating Microglia M1 and M2 Polarization via the TLR4/MyD88/NF-κB Signaling Pathway.","authors":"Bei Jing, Jia-Ji Zhao, Zhen-Ni Chen, Wai-Mei Si, Shi-Quan Chang, Ya-Chun Zheng, Zi-Feng Zhuang, Guo-Ping Zhao, Di Zhang","doi":"10.1007/s11481-025-10202-9","DOIUrl":"https://doi.org/10.1007/s11481-025-10202-9","url":null,"abstract":"<p><p>The aim of this research endeavor was to explore the therapeutic potential of ( +)-catechin in mitigating neuropathic pain. A total of thirty-two Sprague‒Dawley rats were randomly allocated into four groups: the sham group, the chronic constriction injury (CCI) group, the CCI + ibuprofen group, and the CCI + ( +)-catechin group. The results of the in vivo experiment show that ( +)-catechin has the potential to improve mechanical hyperalgesia induced by CCI and reduce the infiltration of inflammatory cells in the injured sciatic nerve. CCI induces the upregulation of nNOS, iNOS, IL-1β, and COX-2 within the rat sciatic nerve and leads to an elevation in the levels of IL-1β, PGE2, and TNF-α in the serum of rats, while simultaneously diminishing the secretion of IL-10. Moreover, immunofluorescence analysis reveals that CCI enhances the expression of CD32 (an M1 polarization marker) in the rat spinal cord, while diminishing the expression of CD206 (an M2 polarization marker). However, the administration of ( +)-catechin effectively counteracts these effects. Western blot analysis further demonstrates that ( +)-catechin significantly reduces the protein expression of IBA-1, IL-1β, MyD88, p-NF-κB, p-JNK, p-ERK, p-p38MAPK, COX-2, and TLR4 within the spinal cord. The findings of the BV2 cell experiment revealed the attenuating effects of ( +)-catechin on M1 polarization markers (such as IL-1β, TNF-α, iNOS, and CD32), while concurrently boosting the levels of M2 polarization markers (including CD206, IL-10, and Arg-1). Notably, administration of LPS significantly heightened the accumulation of IBA-1, IL-1β, MyD88, p-NF-κB, p-JNK, p-ERK, p-p38MAPK, TLR4, COX-2, and iNOS, while concurrently suppressing Arg-1 expression. However, the administration of ( +)-catechin effectively reversed these alterations. Overall, these findings suggest that ( +)-catechin alleviates neuropathic pain by modulating the M1 and M2 phenotypes of microglia through the TLR4/MyD88/NF-κB pathway.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":"20 1","pages":"33"},"PeriodicalIF":6.2,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143804998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pentoxifylline Prevents Neuroinflammation and Modifies PTEN/TrkB Signaling in an LPS-Induced Depression Model. 己酮茶碱在脂多糖诱导的抑郁模型中预防神经炎症并改变PTEN/TrkB信号。
IF 6.2
Tahir Ali, Yanhua Luo, Chengyou Zheng, Shafiq Ur Rahman, Iram Murtaza, Jinxing Feng, Shupeng Li
{"title":"Pentoxifylline Prevents Neuroinflammation and Modifies PTEN/TrkB Signaling in an LPS-Induced Depression Model.","authors":"Tahir Ali, Yanhua Luo, Chengyou Zheng, Shafiq Ur Rahman, Iram Murtaza, Jinxing Feng, Shupeng Li","doi":"10.1007/s11481-025-10193-7","DOIUrl":"10.1007/s11481-025-10193-7","url":null,"abstract":"<p><p>Neuroinflammation affects patients with major depressive disorder and is linked to severe, treatment-resistant symptoms, making it a promising therapeutic target for improving depressive symptoms. This study highlighted the neuroprotective role of pentoxifylline (PTX) against lipopolysaccharide (LPS)-induced neuroinflammation and associated behavioral deficits. Mice were injected with LPS (1 mg/kg, i.p) to induce neuroinflammation and treated with PTX (10 mg/kg, i.p). Behavioral and biochemical analyses were performed to evaluate depressive-like behaviors and examine hippocampal protein expression associated with neuroinflammation and synaptic plasticity. LPS administration increased proinflammatory cytokine production (IL-1, IL6, and TNF-α), microglial activation (IBA-1/GFAP), and dysregulation of key synaptic proteins, including BDNF and TrkB, in the hippocampus of mice. Concomitantly, LPS reduced Phosphatase and tensin homolog (PTEN) phosphorylation, potentially contributing to increased neuroinflammation. PTX treatment effectively attenuated LPS-induced effects by suppressing inflammatory responses, restoring BDNF/TrkB signaling, and rescuing synaptic impairments. Mechanistically, PTX treatment increased PTEN phosphorylation and was reversed by the TrkB inhibitor K252a, suggesting that PTX upregulates TrkB/BDNF signaling, leading to increased PTEN phosphorylation and subsequent inhibition of PTEN activity. These findings highlight the potential of PTX as a therapeutic agent for neuroinflammatory conditions, possibly exerting its effects by modulating the PTEN/TrkB/BDNF signaling axis and suggest a novel mechanism of action involving the modulation of the PTEN/TrkB/BDNF signaling pathway.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":"20 1","pages":"31"},"PeriodicalIF":6.2,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143774773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dapagliflozin Ameliorate Type-2 Diabetes Associated Neuropathy via Regulation of IGF-1R Signaling. 达格列净通过调节IGF-1R信号改善2型糖尿病相关神经病变
IF 6.2
Prabhsimran Kaur, Tashvinder Singh, Laxmipriya Jena, Tanya Gupta, Manjit Kaur Rana, Sandeep Singh, Randhir Singh, Puneet Kumar, Anjana Munshi
{"title":"Dapagliflozin Ameliorate Type-2 Diabetes Associated Neuropathy via Regulation of IGF-1R Signaling.","authors":"Prabhsimran Kaur, Tashvinder Singh, Laxmipriya Jena, Tanya Gupta, Manjit Kaur Rana, Sandeep Singh, Randhir Singh, Puneet Kumar, Anjana Munshi","doi":"10.1007/s11481-025-10200-x","DOIUrl":"10.1007/s11481-025-10200-x","url":null,"abstract":"<p><p>Dapagliflozin, an approved SGLT2 inhibitor, has been shown to have extra-glycemic effects like cardio-reno protection. However, the neuroprotective effects of SGLT2 inhibitors against diabetic neuropathy (DN) have not been explored. The current study aimed to determine the neuroprotective potential of Dapagliflozin against STZ-NAD-induced DN in Wistar rats via IGF-1 signaling. DN was induced by STZ-NAD in male Wistar rats. After 60 days of induction, behavioural tests were conducted to access DN, and treatment with Dapagliflozin (0.75 mg/kg & 1.50 mg/kg) was initiated for 30 days. At the end of the study, the brain and sciatic nerve were isolated and expression analysis of IGF-1R signaling molecules was carried out using western blotting, qRTPCR, and immunohistochemistry. Structural changes in the brain and sciatic nerve were ascertained by histopathology. The results showed that treatment with Dapagliflozin improved behavioural parameters in STZ-NAD-induced DN rats. The decreased expression levels of IGF1R signaling pathway molecules and increased expression of p-AKT were found to increase and decrease in the brain and sciatic nerve, respectively after the treatment. Histological studies demonstrated the restoration of normal architecture of the brain and sciatic nerve after treatment with dapagliflozin. The altered expression of IGF-1R signaling molecules established the neuroprotective potential of dapagliflozin against DN.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":"20 1","pages":"32"},"PeriodicalIF":6.2,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143774758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revisiting Migraine Pathophysiology: from Neurons To Immune Cells Through Lens of Immune Regulatory Pathways. 重新审视偏头痛的病理生理学:从神经元到免疫细胞通过免疫调节途径的镜头。
IF 6.2
Sugumar Subalakshmi, R Rushendran, Chitra Vellapandian
{"title":"Revisiting Migraine Pathophysiology: from Neurons To Immune Cells Through Lens of Immune Regulatory Pathways.","authors":"Sugumar Subalakshmi, R Rushendran, Chitra Vellapandian","doi":"10.1007/s11481-025-10197-3","DOIUrl":"10.1007/s11481-025-10197-3","url":null,"abstract":"<p><p>Migraine is a prevalent neurological disorder characterized by severe, recurrent headaches accompanied by symptoms, such as nausea, photophobia, and phonophobia, significantly affecting the quality of life of millions of people worldwide. Although the neurovascular pathway, involving blood vessel dilation and neurogenic inflammation, has been a cornerstone in understanding migraine pathophysiology. Emerging evidence suggests that immune dysregulation plays a pivotal role in the onset and progression of migraine. This review uniquely synthesizes recent advances linking immune regulatory pathways to migraine, an area that has not been widely explored in the literature. Specifically, we highlighted the involvement of CD4 + CD25 + regulatory T (Treg) cells, interleukins, and pro-inflammatory and anti-inflammatory cytokines, which have been implicated in pain signaling and immune imbalance in patients with migraine. Furthermore, genetic studies have provided compelling evidence by identifying associations between migraine susceptibility and immune-related polymorphisms, particularly in forkhead box P3 (FOXP3) and nuclear factor of activated T cells (NFAT). Moreover, the higher prevalence of migraine in individuals with comorbid autoimmune diseases further supports the hypothesis of a shared pathophysiological mechanism. Despite the growing recognition of immune involvement in migraine, its precise mechanisms remain unclear. By integrating key immune biomarkers and genetic insights, this review proposes a novel framework for understanding the immune-mediated pathways in migraine progression. Future research should focus on elucidating the specific immunological mechanisms underlying migraine, which could open new avenues for innovative, targeted therapeutic strategies.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":"20 1","pages":"30"},"PeriodicalIF":6.2,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143766109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IL-17 A Exacerbated Neuroinflammatory and Neurodegenerative Biomarkers in Intranasal Amyloid-Beta Model of Alzheimer's Disease. IL-17 A在阿尔茨海默病鼻内β淀粉样蛋白模型中增加神经炎症和神经退行性生物标志物
IF 6.2
Avtar Singh Gautam, Shivam Kumar Pandey, Sneha Balki, Ekta Swarnmayee Panda, Rakesh Kumar Singh
{"title":"IL-17 A Exacerbated Neuroinflammatory and Neurodegenerative Biomarkers in Intranasal Amyloid-Beta Model of Alzheimer's Disease.","authors":"Avtar Singh Gautam, Shivam Kumar Pandey, Sneha Balki, Ekta Swarnmayee Panda, Rakesh Kumar Singh","doi":"10.1007/s11481-025-10192-8","DOIUrl":"10.1007/s11481-025-10192-8","url":null,"abstract":"<p><p>Proinflammatory cytokines, especially interleukin-17 A (IL-17 A) have been found to be significantly associated with AD patients. IL-17 A amplifies neuroinflammation during AD pathology. This study highlighted the ability of IL-17 A to exacerbate amyloid-beta-induced pathology in animals. The AD pathology was induced with repeated intranasal administration of Aβ along with recombinant mouse IL-17 A (rmIL-17) at 1, 2 and 4 µg/kg for seven alternate days. Although, the combination of rmIL-17 and Aβ did not have severe effects on memory of the animals, but it drastically increased the IL-17 A mediated signaling, level of proinflammatory cytokines, oxidative stress and reduced antioxidants in the hippocampus and cortex regions of the animal brains. Interestingly, combining rmIL-17 with Aβ also triggered the expression of AD structural markers like pTau, amyloid-beta and BACE1 in the brain regions. Furthermore, rmIL-17 with Aβ exposure stimulated astrocytes and microglia leading to activation of proinflammatory signaling in the brain of the animals. These results showed the propensity of IL-17 A to promote severity of AD pathology and suggest IL-17 A as potent therapeutic target to control AD progression.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":"20 1","pages":"29"},"PeriodicalIF":6.2,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143756333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信