Exploring Dapagliflozin's Influence on Autophagic Flux in Mania-like Behaviour: Insights from the LKB1/AMPK/LC3 Pathway in a Mouse Model.

IF 6.2
Nada K Saleh, Sama M Farrag, Mohamed F El-Yamany, Ahmed S Kamel
{"title":"Exploring Dapagliflozin's Influence on Autophagic Flux in Mania-like Behaviour: Insights from the LKB1/AMPK/LC3 Pathway in a Mouse Model.","authors":"Nada K Saleh, Sama M Farrag, Mohamed F El-Yamany, Ahmed S Kamel","doi":"10.1007/s11481-025-10218-1","DOIUrl":null,"url":null,"abstract":"<p><p>Mania-like episodes are neuropsychiatric disturbances associated with bipolar disorder (BD). Autophagic flux disturbance evolved as one of the molecular mechanisms implicated in mania. Recently, Dapagliflozin (DAPA) has corrected autophagic signaling in several neurological disorders. Yet, no endeavours examined the autophagic impact of DAPA in mania-like behaviours. This study aimed to investigate the effect of DAPA on disrupted autophagic pathways in a mouse model of mania-like behaviour. Mania-like behaviour was induced through paradoxical sleep deprivation (PSD) using the multiple-platform method for a duration of 36 h. Mice were divided into three groups, with DAPA (1 mg/kg/day, orally) administered for one week. Behavioural assessments were conducted on the 7th day. DAPA mitigated anxiety-like behaviour in the open field test and improved motor coordination and muscle tone in the rotarod test. Mechanistically, DAPA activated hippocampal autophagy-related markers; liver kinase B1/AMP-activated protein kinase (LKB1/AMPK) pathway, autophagy related gene 7 (ATG7), and microtubule-associated protein light chain 3II (LC3II). This was associated with reduced levels of the autophagosome receptor p62 protein, which subsequently enhanced GABA<sub>A</sub> receptor-associated protein (GABARAP), facilitating the surface presentation of GABA<sub>A</sub> receptors. Additionally, DAPA upregulated the GABA<sub>B</sub> receptor R2 subunit through trophic factors such as brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF). Furthermore, DAPA mitigated elevated serum stress hormones and restored the balance between proinflammatory and anti-inflammatory cytokines in both cortical and hippocampal tissues. These findings highlight the role of autophagic flux modulation by DAPA and its therapeutic potential in mitigating mania-like behaviours.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":"20 1","pages":"57"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12098488/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11481-025-10218-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mania-like episodes are neuropsychiatric disturbances associated with bipolar disorder (BD). Autophagic flux disturbance evolved as one of the molecular mechanisms implicated in mania. Recently, Dapagliflozin (DAPA) has corrected autophagic signaling in several neurological disorders. Yet, no endeavours examined the autophagic impact of DAPA in mania-like behaviours. This study aimed to investigate the effect of DAPA on disrupted autophagic pathways in a mouse model of mania-like behaviour. Mania-like behaviour was induced through paradoxical sleep deprivation (PSD) using the multiple-platform method for a duration of 36 h. Mice were divided into three groups, with DAPA (1 mg/kg/day, orally) administered for one week. Behavioural assessments were conducted on the 7th day. DAPA mitigated anxiety-like behaviour in the open field test and improved motor coordination and muscle tone in the rotarod test. Mechanistically, DAPA activated hippocampal autophagy-related markers; liver kinase B1/AMP-activated protein kinase (LKB1/AMPK) pathway, autophagy related gene 7 (ATG7), and microtubule-associated protein light chain 3II (LC3II). This was associated with reduced levels of the autophagosome receptor p62 protein, which subsequently enhanced GABAA receptor-associated protein (GABARAP), facilitating the surface presentation of GABAA receptors. Additionally, DAPA upregulated the GABAB receptor R2 subunit through trophic factors such as brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF). Furthermore, DAPA mitigated elevated serum stress hormones and restored the balance between proinflammatory and anti-inflammatory cytokines in both cortical and hippocampal tissues. These findings highlight the role of autophagic flux modulation by DAPA and its therapeutic potential in mitigating mania-like behaviours.

探索达格列净对躁狂样行为自噬通量的影响:小鼠模型中LKB1/AMPK/LC3通路的见解
躁狂样发作是与双相情感障碍(BD)相关的神经精神障碍。自噬通量紊乱是躁狂的分子机制之一。最近,Dapagliflozin (DAPA)已经纠正了几种神经系统疾病的自噬信号。然而,没有人研究过DAPA在躁狂行为中的自噬作用。本研究旨在探讨DAPA对躁狂样行为小鼠模型中自噬通路中断的影响。使用多平台方法通过矛盾睡眠剥夺(PSD)诱导躁狂样行为,持续36小时。小鼠分为三组,给予DAPA (1 mg/kg/天,口服)一周。第7天进行行为评估。DAPA减轻了开阔场地试验中的焦虑样行为,并改善了旋转杆试验中的运动协调和肌肉张力。在机制上,DAPA激活了海马自噬相关标志物;肝激酶B1/ amp活化蛋白激酶(LKB1/AMPK)途径、自噬相关基因7 (ATG7)和微管相关蛋白轻链3II (LC3II)。这与自噬小体受体p62蛋白水平降低有关,这随后增强了GABAA受体相关蛋白(GABARAP),促进了GABAA受体的表面呈现。此外,DAPA通过脑源性神经营养因子(BDNF)和胶质细胞系源性神经营养因子(GDNF)等营养因子上调GABAB受体R2亚基。此外,DAPA可以缓解血清应激激素升高,恢复皮层和海马组织中促炎和抗炎细胞因子的平衡。这些发现强调了DAPA自噬通量调节的作用及其在减轻躁狂样行为方面的治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信