COP1 Overexpression Attenuates Nociceptive Behaviors and Neuroinflammation in Cancer-Induced Bone Pain by Suppressing c/EBPβ.

IF 6.2
Dan-Yang Li, Lin Liu, Shao-Jie Gao, Dai-Qiang Liu, Long-Qing Zhang, Jia-Yi Wu, Fan-He Song, Xin-Yi Dai, Ya-Qun Zhou, Wei Mei
{"title":"COP1 Overexpression Attenuates Nociceptive Behaviors and Neuroinflammation in Cancer-Induced Bone Pain by Suppressing c/EBPβ.","authors":"Dan-Yang Li, Lin Liu, Shao-Jie Gao, Dai-Qiang Liu, Long-Qing Zhang, Jia-Yi Wu, Fan-He Song, Xin-Yi Dai, Ya-Qun Zhou, Wei Mei","doi":"10.1007/s11481-025-10217-2","DOIUrl":null,"url":null,"abstract":"<p><p>Patients with advanced cancer often have bone metastases, causing bone destruction and cancer-induced bone pain (CIBP). The CCAAT/enhancer binding protein β (c/EBPβ) mediated the regulation of various pro-inflammatory molecules in microglia. To investigate the specific effect and regulatory mechanism of c/EBPβ in CIBP, a mice model of Lewis lung cancer (LLC) cells implantation was constructed. Our data demonstrated that the c/EBPβ was remarkably elevated in the spinal cord of CIBP mice. Specific knocking down c/EBPβ relieved the mechanical allodynia and thermal hyperalgesia of CIBP mice by suppressing the microglia activation and pro-inflammatory cytokines generation. Besides, overexpressing c/EBPβ could prompt severe pain behaviors with spinal neuroinflammation in naïve mice. Notably, the upstream regulator constitutive photomorphogenic 1 (COP1) was gradually reduced in the spinal cord of CIBP mice. Upregulating the expression of COP1 effectively alleviated the nociceptive behaviors of CIBP mice by inhibiting the accumulation of c/EBPβ and subsequent neuroinflammation. However, knocking down COP1 caused the rapid increase of c/EBPβ and exacerbation of spinal neuroinflammation, ultimately leading to behavioral damage in naïve mice. In conclusion, the absence of COP1 promoted the accumulation of c/EBPβ and neuroinflammatory molecules in the spinal cord of CIBP mice, which extends the future therapeutic approach for CIBP.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":"20 1","pages":"54"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11481-025-10217-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Patients with advanced cancer often have bone metastases, causing bone destruction and cancer-induced bone pain (CIBP). The CCAAT/enhancer binding protein β (c/EBPβ) mediated the regulation of various pro-inflammatory molecules in microglia. To investigate the specific effect and regulatory mechanism of c/EBPβ in CIBP, a mice model of Lewis lung cancer (LLC) cells implantation was constructed. Our data demonstrated that the c/EBPβ was remarkably elevated in the spinal cord of CIBP mice. Specific knocking down c/EBPβ relieved the mechanical allodynia and thermal hyperalgesia of CIBP mice by suppressing the microglia activation and pro-inflammatory cytokines generation. Besides, overexpressing c/EBPβ could prompt severe pain behaviors with spinal neuroinflammation in naïve mice. Notably, the upstream regulator constitutive photomorphogenic 1 (COP1) was gradually reduced in the spinal cord of CIBP mice. Upregulating the expression of COP1 effectively alleviated the nociceptive behaviors of CIBP mice by inhibiting the accumulation of c/EBPβ and subsequent neuroinflammation. However, knocking down COP1 caused the rapid increase of c/EBPβ and exacerbation of spinal neuroinflammation, ultimately leading to behavioral damage in naïve mice. In conclusion, the absence of COP1 promoted the accumulation of c/EBPβ and neuroinflammatory molecules in the spinal cord of CIBP mice, which extends the future therapeutic approach for CIBP.

COP1过表达通过抑制c/EBPβ减轻癌性骨痛的伤害性行为和神经炎症。
晚期癌症患者经常发生骨转移,导致骨破坏和癌症性骨痛(CIBP)。CCAAT/增强子结合蛋白β (c/EBPβ)介导小胶质细胞中各种促炎分子的调节。为了研究c/EBPβ在CIBP中的特异性作用及其调控机制,我们构建了Lewis肺癌(LLC)细胞移植小鼠模型。我们的数据表明,c/EBPβ在CIBP小鼠脊髓中显著升高。特异性敲除c/EBPβ可通过抑制小胶质细胞的激活和促炎细胞因子的产生来缓解CIBP小鼠的机械异常性痛和热痛觉过敏。此外,过表达c/EBPβ可以促进naïve小鼠脊髓神经炎症的严重疼痛行为。值得注意的是,在CIBP小鼠的脊髓中,上游调节因子组成型光形态发生1 (COP1)逐渐减少。上调COP1的表达可通过抑制c/EBPβ的积累和随后的神经炎症有效减轻CIBP小鼠的伤害性行为。然而,敲低COP1会导致c/EBPβ快速升高和脊髓神经炎症加剧,最终导致naïve小鼠行为损伤。综上所述,COP1的缺失促进了CIBP小鼠脊髓中c/EBPβ和神经炎症分子的积累,这为CIBP的未来治疗方法提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信