Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology最新文献

筛选
英文 中文
L-carnitine Modulates Cognitive Impairment Induced by Doxorubicin and Cyclophosphamide in Rats; Insights to Oxidative Stress, Inflammation, Synaptic Plasticity, Liver/brain, and Kidney/brain Axes. 左旋肉碱对阿霉素和环磷酰胺诱导的大鼠认知功能障碍的调节作用;对氧化应激、炎症、突触可塑性、肝脏/大脑和肾脏/大脑轴的见解。
IF 6.2
Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology Pub Date : 2023-09-01 Epub Date: 2023-05-04 DOI: 10.1007/s11481-023-10062-1
Olivia Fayez Morid, Esther T Menze, Mariane G Tadros, Mina Y George
{"title":"L-carnitine Modulates Cognitive Impairment Induced by Doxorubicin and Cyclophosphamide in Rats; Insights to Oxidative Stress, Inflammation, Synaptic Plasticity, Liver/brain, and Kidney/brain Axes.","authors":"Olivia Fayez Morid,&nbsp;Esther T Menze,&nbsp;Mariane G Tadros,&nbsp;Mina Y George","doi":"10.1007/s11481-023-10062-1","DOIUrl":"10.1007/s11481-023-10062-1","url":null,"abstract":"<p><p>Chemotherapy-induced cognitive impairment in cancer patients is known as \"chemobrain\". Doxorubicin and Cyclophosphamide are two chemotherapeutic agents used in combination to treat solid tumors. L-carnitine was reported for its anti-oxidant and anti-inflammatory activities. The goal of the present study was to elucidate the neuroprotective effect of L-carnitine against chemobrain induced by Doxorubicin and Cyclophosphamide in rats. Rats were divided into five groups: Control group; Doxorubicin (4mg/kg, IV) and Cyclophosphamide (40mg/kg, IV)-treated group; two L-carnitine-treated groups (150 and 300mg/kg, ip) with Doxorubicin and Cyclophosphamide; and L-carnitine alone-treated group (300mg/kg). Doxorubicin and Cyclophosphamide induced histopathological changes in rats' hippocampi and prefrontal cortices, as well as reduced memory as evidenced by behavioural testing. L-carnitine treatment showed opposite effects. In addition, chemotherapy treatment enhanced oxidative stress via reducing catalase and glutathione levels, and inducing lipid peroxidation. By contrast, L-carnitine treatment showed powerful antioxidant effects reversing chemotherapy-induced oxidative damage. Moreover, chemotherapy combination induced inflammation via their effect on nuclear factor kappa B (p65), interleukin-1β, and tumor necrosis factor-α. However, L-carnitine treatment corrected such inflammatory responses. Furthermore, Doxorubicin and Cyclophosphamide reduced synaptic plasticity via hindering expression of brain-derived neurotrophic factor, phosphorylated cyclase response element binding protein, synaptophysin, and postsynaptic density protein 95 whereas protein expression of such synaptic plasticity biomarkers was enhanced by L-carnitine treatment. Finally, acetylcholinesterase activity was found to be enhanced by chemotherapy treatment affecting rats' memory while L-carnitine treatment reduced acetylcholinesterase activity. L-carnitine also showed hepatoprotective and renal protective effects suggesting liver/brain and kidney/brain axes as possible mechanisms for its neuroprotective effects.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":" ","pages":"310-326"},"PeriodicalIF":6.2,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10577097/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9404602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Maternal Immune Activation Induces Cortical Catecholaminergic Hypofunction and Cognitive Impairments in Offspring. 母体免疫激活诱导子代皮质儿茶酚胺能低下和认知障碍。
IF 6.2
Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology Pub Date : 2023-09-01 Epub Date: 2023-05-20 DOI: 10.1007/s11481-023-10070-1
Blanca Perez-Palomar, Amaia M Erdozain, Ines Erkizia-Santamaría, Jorge E Ortega, J Javier Meana
{"title":"Maternal Immune Activation Induces Cortical Catecholaminergic Hypofunction and Cognitive Impairments in Offspring.","authors":"Blanca Perez-Palomar,&nbsp;Amaia M Erdozain,&nbsp;Ines Erkizia-Santamaría,&nbsp;Jorge E Ortega,&nbsp;J Javier Meana","doi":"10.1007/s11481-023-10070-1","DOIUrl":"10.1007/s11481-023-10070-1","url":null,"abstract":"<p><strong>Background: </strong>Impairment of specific cognitive domains in schizophrenia has been associated with prefrontal cortex (PFC) catecholaminergic deficits. Among other factors, prenatal exposure to infections represents an environmental risk factor for schizophrenia development in adulthood. However, it remains largely unknown whether the prenatal infection-induced changes in the brain may be associated with concrete switches in a particular neurochemical circuit, and therefore, if they could alter behavioral functions.</p><p><strong>Methods: </strong>In vitro and in vivo neurochemical evaluation of the PFC catecholaminergic systems was performed in offspring from mice undergoing maternal immune activation (MIA). The cognitive status was also evaluated. Prenatal viral infection was mimicked by polyriboinosinic-polyribocytidylic acid (poly(I:C)) administration to pregnant dams (7.5 mg/kg i.p., gestational day 9.5) and consequences were evaluated in adult offspring.</p><p><strong>Results: </strong>MIA-treated offspring showed disrupted recognition memory in the novel object recognition task (t = 2.30, p = 0.031). This poly(I:C)-based group displayed decreased extracellular dopamine (DA) concentrations compared to controls (t = 3.17, p = 0.0068). Potassium-evoked release of DA and noradrenaline (NA) were impaired in the poly(I:C) group (DA: F<sub>t</sub>[10,90] = 43.33, p < 0.0001; F<sub>tr</sub>[1,90] = 1.224, p = 0.2972; F<sub>i</sub>[10,90] = 5.916, p < 0.0001; n = 11); (NA: F<sub>t</sub>[10,90] = 36.27, p < 0.0001; F<sub>tr</sub>[1,90] = 1.841, p = 0.208; F<sub>i</sub>[10,90] = 8.686, p < 0.0001; n = 11). In the same way, amphetamine-evoked release of DA and NA were also impaired in the poly(I:C) group (DA: F<sub>t</sub>[8,328] = 22.01, p < 0.0001; F<sub>tr</sub>[1,328] = 4.507, p = 0.040; F<sub>i</sub>[8,328] = 2.319, p = 0.020; n = 43); (NA: F<sub>t</sub>[8,328] = 52.07; p < 0.0001; F<sub>tr</sub>[1,328] = 4.322; p = 0.044; F<sub>i</sub>[8,398] = 5.727; p < 0.0001; n = 43). This catecholamine imbalance was accompanied by increased dopamine D<sub>1</sub> and D<sub>2</sub> receptor expression (t = 2.64, p = 0.011 and t = 3.55, p = 0.0009; respectively), whereas tyrosine hydroxylase, DA and NA tissue content, DA and NA transporter (DAT/NET) expression and function were unaltered.</p><p><strong>Conclusions: </strong>MIA induces in offspring a presynaptic catecholaminergic hypofunction in PFC with cognitive impairment. This poly(I:C)-based model reproduces catecholamine phenotypes reported in schizophrenia and represents an opportunity for the study of cognitive impairment associated to this disorder.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":" ","pages":"348-365"},"PeriodicalIF":6.2,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10577104/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9494446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
As a Potential Therapeutic Target, C1q Induces Synapse Loss Via Inflammasome-activating Apoptotic and Mitochondria Impairment Mechanisms in Alzheimer's Disease. 作为一种潜在的治疗靶点,C1q通过炎症小体激活阿尔茨海默病的凋亡和线粒体损伤机制诱导突触损失。
IF 6.2
Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology Pub Date : 2023-09-01 Epub Date: 2023-06-29 DOI: 10.1007/s11481-023-10076-9
Pei-Pei Guan, Tong-Qi Ge, Pu Wang
{"title":"As a Potential Therapeutic Target, C1q Induces Synapse Loss Via Inflammasome-activating Apoptotic and Mitochondria Impairment Mechanisms in Alzheimer's Disease.","authors":"Pei-Pei Guan,&nbsp;Tong-Qi Ge,&nbsp;Pu Wang","doi":"10.1007/s11481-023-10076-9","DOIUrl":"10.1007/s11481-023-10076-9","url":null,"abstract":"<p><p>C1q, the initiator of the classical pathway of the complement system, is activated during Alzheimer's disease (AD) development and progression and is especially associated with the production and deposition of β-amyloid protein (Aβ) and phosphorylated tau in β-amyloid plaques (APs) and neurofibrillary tangles (NFTs). Activation of C1q is responsible for induction of synapse loss, leading to neurodegeneration in AD. Mechanistically, C1q could activate glial cells, which results in the loss of synapses via regulation of synapse pruning and phagocytosis in AD. In addition, C1q induces neuroinflammation by inducing proinflammatory cytokine secretion, which is partially mediated by inflammasome activation. Activation of inflammasomes might mediate the effects of C1q on induction of synapse apoptosis. On the other hand, activation of C1q impairs mitochondria, which hinders the renovation and regeneration of synapses. All these actions of C1q contribute to the loss of synapses during neurodegeneration in AD. Therefore, pharmacological, or genetic interventions targeting C1q may provide potential therapeutic strategies for combating AD.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":" ","pages":"267-284"},"PeriodicalIF":6.2,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10074332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Impact of Adolescent Nicotine Exposure in Pre- and Post-natal Oxycodone Exposed Offspring. 青春期尼古丁暴露对暴露于羟考酮的产前和产后后代的影响。
IF 6.2
Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology Pub Date : 2023-09-01 Epub Date: 2023-06-23 DOI: 10.1007/s11481-023-10074-x
Adrian Flores, Austin Gowen, Victoria L Schaal, Sneh Koul, Jordan B Hernandez, Sowmya V Yelamanchili, Gurudutt Pendyala
{"title":"Impact of Adolescent Nicotine Exposure in Pre- and Post-natal Oxycodone Exposed Offspring.","authors":"Adrian Flores,&nbsp;Austin Gowen,&nbsp;Victoria L Schaal,&nbsp;Sneh Koul,&nbsp;Jordan B Hernandez,&nbsp;Sowmya V Yelamanchili,&nbsp;Gurudutt Pendyala","doi":"10.1007/s11481-023-10074-x","DOIUrl":"10.1007/s11481-023-10074-x","url":null,"abstract":"<p><p>Perinatal exposure to prescription opioids pose a critical public health risk. Notably, research has found significant neurodevelopmental and behavioral deficits between in utero (IUO) and postnatal (PNO) oxycodone-exposed offspring but there is a notable gap in knowledge regarding the interaction of these groups to other drug exposure, particularly nicotine exposure. Nicotine's widespread use represents a ubiquitous clinical interaction that current research does not address. Children often experiment with drugs and risky behavior; therefore, adolescence is a key timepoint to characterize. This study employed an integrated systems approach to investigate escalating nicotine exposure in adolescence and subsequent nicotine withdrawal in the IUO- and PNO-offspring. Western blot analysis found synaptic protein alterations, especially upregulation of synaptophysin in IUO-withdrawal animals. RT-qPCR further validated immune dysfunction in the central nervous system (CNS). Peripheral nicotine metabolism was consistent with increased catabolism of nicotine concerning IUO animals. Lastly, behavioral assays found subtle deficits to withdrawal in nociception and anxiety-like behavior. This study showed, for the first time, the vulnerabilities of PNO- and IUO-exposed groups concerning nicotine use during early adolescence and withdrawal. Graphical Abstract.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":" ","pages":"413-426"},"PeriodicalIF":6.2,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9676491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of Depression- and Anxiety-Like Behaviours in a Mouse Model of Relapsing-Remitting Multiple Sclerosis. 复发缓解型多发性硬化症小鼠模型中抑郁和焦虑样行为的特征。
IF 6.2
Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology Pub Date : 2023-09-01 Epub Date: 2023-08-01 DOI: 10.1007/s11481-023-10080-z
Diulle Spat Peres, Fernanda Tibolla Viero, Patrícia Rodrigues, Laura de Barros Bernardes, Náthaly Andriguetto Ruviaro da Silva, Igor Ramos Lima, Gabrielli Martins, Paulo Cesar Lock Silveira, Marcella de Amorim Ferreira, Ana Merian Silva, Juliano Ferreira, Gabriela Trevisan
{"title":"Characterization of Depression- and Anxiety-Like Behaviours in a Mouse Model of Relapsing-Remitting Multiple Sclerosis.","authors":"Diulle Spat Peres,&nbsp;Fernanda Tibolla Viero,&nbsp;Patrícia Rodrigues,&nbsp;Laura de Barros Bernardes,&nbsp;Náthaly Andriguetto Ruviaro da Silva,&nbsp;Igor Ramos Lima,&nbsp;Gabrielli Martins,&nbsp;Paulo Cesar Lock Silveira,&nbsp;Marcella de Amorim Ferreira,&nbsp;Ana Merian Silva,&nbsp;Juliano Ferreira,&nbsp;Gabriela Trevisan","doi":"10.1007/s11481-023-10080-z","DOIUrl":"10.1007/s11481-023-10080-z","url":null,"abstract":"<p><p>Relapsing-remitting multiple sclerosis (RRMS) is an autoimmune neurological disease and is the most common subtype of MS. In addition, it is associated with the development of depression and anxiety. To date, depressive- and anxiety-like behaviours were only studied using models of progressive MS, which causes severe motor alterations. Thus, we sought to standardise the depressive and anxiety-like behaviours in an RRMS model induced by experimental autoimmune encephalomyelitis (RR-EAE) in mice. The RR-EAE model was induced in C57BL/6 female mice using myelin oligodendrocyte glycoprotein (MOG35-55) antigen and Quillaja saponin (Quil A) as an adjuvant. The immunisation of RR-EAE did not induce locomotor alteration but caused relapsing-remitting induction of clinical scores in mice until 35 post-immunization (p.i.). Also, increased levels of tumour necrosis factor alpha (TNF-α), astrocyte marker (GFAP), and microglial markers (IBA-1) were detected in the prefrontal cortex at 35 p.i. of RR-EAE. In the open field test, RR-EAE mice showed decreased time spent at the centre and sniffing behaviour (at days 21 and 34 p.i.). Also, on day 35 p.i. the RR-EAE group spent less time in the open arms and had decreased open-arm entries compared to control mice in the elevated plus maze (EPM) test, confirming the anxiety-like behaviour. At day 36° p.i. in the tail suspension test, mice showed depression-like behaviour with decreased latency time and increased immobility time. Thus, the RR-EAE model mimics the neuroinflammatory and behavioural features of the RRMS, including depression- and anxiety-like symptoms.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":" ","pages":"235-247"},"PeriodicalIF":6.2,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9912115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Endolysosomal Transporter DMT1 is Required for Morphine Regulation of Neuronal Ferritin Heavy Chain. 内溶酶体转运蛋白DMT1是吗啡调节神经元铁蛋白重链所必需的。
IF 6.2
Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology Pub Date : 2023-09-01 Epub Date: 2023-09-04 DOI: 10.1007/s11481-023-10082-x
Elena Irollo, Bradley Nash, Jared Luchetta, Renato Brandimarti, Olimpia Meucci
{"title":"The Endolysosomal Transporter DMT1 is Required for Morphine Regulation of Neuronal Ferritin Heavy Chain.","authors":"Elena Irollo, Bradley Nash, Jared Luchetta, Renato Brandimarti, Olimpia Meucci","doi":"10.1007/s11481-023-10082-x","DOIUrl":"10.1007/s11481-023-10082-x","url":null,"abstract":"<p><p>NeuroHIV and other neurologic disorders present with altered iron metabolism in central nervous system neurons. Many people with HIV also use opioids, which can worsen neuroHIV symptoms by further dysregulating neuronal iron metabolism. Our previous work demonstrated that the μ-opioid agonist morphine causes neuronal endolysosomes to release their iron stores, and neurons respond by upregulating ferritin heavy chain (FHC), an iron storage protein associated with cognitive impairment in neuroHIV. Here, we investigated if this process required divalent metal transporter 1 (DMT1), a well-known iron transporter expressed on endolysosomes. We first optimized conditions to detect DMT1 isoforms (DMT1 1B ± iron responsive element) using fluorescently labeled rat DMT1 constructs expressed in HEK-293 cells. We also expressed these constructs in primary rat cortical neurons to compare their expression and subcellular distribution with endogenous DMT1 isoforms. We found endogenous DMT1 isoforms in the cytoplasm that colocalized with lysosomal-associated protein 1 (LAMP1), a marker of endolysosomes. Next, we blocked endogenous DMT1 isoforms using ebselen, a potent pharmacological inhibitor of DMT1 iron transport. Ebselen pre-treatment blocked morphine's ability to upregulate FHC protein, suggesting this pathway requires DMT1 iron transport from endolysosomes. This was further validated using viral-mediated genetic silencing of DMT1±IRE in cortical neurons, which also blocked FHC upregulation in the presence of morphine. Overall, our work demonstrates that the μ-opioid agonist morphine utilizes the endolysosomal iron transporter DMT1 to modulate neuronal cellular iron metabolism, upregulate FHC protein, and contribute to cognitive decline in neuroHIV. Morphine requires DMT1 to upregulate neuronal FHC. Cortical neurons treated with morphine release their endolysosomal iron stores to the cytoplasm and upregulate FHC, an iron storage protein associated with dendritic spine deficits and cognitive impairment in neuroHIV. This pathway requires the endolysosomal iron transporter DMT1, as pharmacological and genetic inhibitors of the transporter completely block morphine's ability to upregulate FHC. Created with BioRender.com .</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":" ","pages":"495-508"},"PeriodicalIF":6.2,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10577102/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10148904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fructooligosaccharide (FOS) and Galactooligosaccharide (GOS) Improve Neuroinflammation and Cognition By Up-regulating IRS/PI3K/AKT Signaling Pathway in Diet-induced Obese Mice. 低聚果糖(FOS)和低聚半乳糖(GOS)通过上调饮食诱导的肥胖小鼠的IRS/PI3K/AKT信号通路改善神经炎症和认知。
IF 6.2
Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology Pub Date : 2023-09-01 Epub Date: 2023-06-29 DOI: 10.1007/s11481-023-10069-8
Igor Henrique Rodrigues de Paiva, Rodrigo Soares da Silva, Ingrid Prata Mendonça, Eduardo Duarte-Silva, José Roberto Botelho de Souza, Christina Alves Peixoto
{"title":"Fructooligosaccharide (FOS) and Galactooligosaccharide (GOS) Improve Neuroinflammation and Cognition By Up-regulating IRS/PI3K/AKT Signaling Pathway in Diet-induced Obese Mice.","authors":"Igor Henrique Rodrigues de Paiva,&nbsp;Rodrigo Soares da Silva,&nbsp;Ingrid Prata Mendonça,&nbsp;Eduardo Duarte-Silva,&nbsp;José Roberto Botelho de Souza,&nbsp;Christina Alves Peixoto","doi":"10.1007/s11481-023-10069-8","DOIUrl":"10.1007/s11481-023-10069-8","url":null,"abstract":"&lt;p&gt;&lt;p&gt;Increasing evidence has indicated that prebiotics as an alternative treatment for neuropsychiatric diseases. This study evaluated the prebiotics Fructooligosaccharides (FOS) and Galactooligosaccharides (GOS) on the modulation of neuroinflammation and cognition in an experimental model of mice high-fat diet fed. Initially, mice were distributed in the following groups: (A) control standard diet (n = 15) and (B) HFD for 18 weeks (n = 30). In the 13th week, the mice were later divided into the following experimental groups: (A) Control (n = 15); (B) HFD (n = 14); and (C) HFD + Prebiotics (n = 14). From the 13th week, the HFD + Prebiotics group received a high-fat diet and a combination of FOS and GOS. In the 18th week, all animals performed the T-maze and Barnes Maze, and were later euthanized. Biochemical and molecular analyzes were performed to assess neuroinflammation, neurogenesis, synaptic plasticity, and intestinal inflammation. Mice fed HFD had higher blood glucose, triglyceridemia, cholesterolemia, and higher serum IL-1β associated with impaired learning and memory. These obese mice also showed activation of microglia and astrocytes and significant immunoreactivity of neuroinflammatory and apoptosis markers, such as TNF-α, COX-2, and Caspase-3, in addition to lower expression of neurogenesis and synaptic plasticity markers, such as NeuN, KI-67, CREB-p, and BDNF. FOS and GOS treatment significantly improved the biochemistry profile and decreased serum IL-1β levels. Treatment with FOS and GOS also reduced TNF-α, COX-2, Caspase-3, Iba-1, and GFAP-positive cells in the dentate gyrus, decreasing neuroinflammation and neuronal death caused by chronic HFD consumption. In addition, FOS and GOS promoted synaptic plasticity by increasing NeuN, p-CREB, BDNF, and KI-67, restoring spatial learning ability and memory. Moreover, FOS and GOS on HFD modulated the insulin pathway, which was proved by up-regulating IRS/PI3K/AKT signaling pathway, followed by a decreasing Aβ plate and Tau phosphorylation. Furthermore, the prebiotic intervention reshaped the HFD-induced imbalanced gut microbiota by modulating the composition of the bacterial community, markedly increasing Bacteroidetes. In addition, prebiotics decreased intestinal inflammation and leaky gut. In conclusion, FOS and GOS significantly modulated the gut microbiota and IRS/PI3K/AKT signaling pathway, decreased neuroinflammation, and promoted neuroplasticity improving spatial learning and memory. Schematic summarizing of the pathways by FOS and GOS improves memory and learning through the gut-brain axis. FOS and GOS improve the microbial profile, reducing intestinal inflammation and leaky gut in the distal colon. Specifically, the administration of FOS and GOS decreases the expression of TLR4, TNF-α, IL-1β, and MMP9 and increases the expression of occludin and IL-10. Prebiotics inhibit neuroinflammation, neuronal apoptosis, and reactive gliosis in the hippocampus but restore synaptic plasticity,","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":" ","pages":"427-447"},"PeriodicalIF":6.2,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9693827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emphasizing the Crosstalk Between Inflammatory and Neural Signaling in Post-traumatic Stress Disorder (PTSD). 强调创伤后应激障碍(PTSD)中炎症和神经信号之间的串扰。
IF 6.2
Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology Pub Date : 2023-09-01 Epub Date: 2023-04-25 DOI: 10.1007/s11481-023-10064-z
Anusha Govindula, Niraja Ranadive, Madhavan Nampoothiri, C Mallikarjuna Rao, Devinder Arora, Jayesh Mudgal
{"title":"Emphasizing the Crosstalk Between Inflammatory and Neural Signaling in Post-traumatic Stress Disorder (PTSD).","authors":"Anusha Govindula,&nbsp;Niraja Ranadive,&nbsp;Madhavan Nampoothiri,&nbsp;C Mallikarjuna Rao,&nbsp;Devinder Arora,&nbsp;Jayesh Mudgal","doi":"10.1007/s11481-023-10064-z","DOIUrl":"10.1007/s11481-023-10064-z","url":null,"abstract":"<p><p>Post-traumatic stress disorder (PTSD) is a chronic incapacitating condition with recurrent experience of trauma-related memories, negative mood, altered cognition, and hypervigilance. Agglomeration of preclinical and clinical evidence in recent years specified that alterations in neural networks favor certain characteristics of PTSD. Besides the disruption of hypothalamus-pituitary-axis (HPA) axis, intensified immune status with elevated pro-inflammatory cytokines and arachidonic metabolites of COX-2 such as PGE2 creates a putative scenario in worsening the neurobehavioral facet of PTSD. This review aims to link the Diagnostic and Statistical Manual of mental disorders (DSM-V) symptomology to major neural mechanisms that are supposed to underpin the transition from acute stress reactions to the development of PTSD. Also, to demonstrate how these intertwined processes can be applied to probable early intervention strategies followed by a description of the evidence supporting the proposed mechanisms. Hence in this review, several neural network mechanisms were postulated concerning the HPA axis, COX-2, PGE2, NLRP3, and sirtuins to unravel possible complex neuroinflammatory mechanisms that are obscured in PTSD condition.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":" ","pages":"248-266"},"PeriodicalIF":6.2,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10577110/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9344156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Natural Immunosuppressants as a Treatment for Chronic Insomnia Targeting the Inflammatory Response Induced by NLRP3/caspase-1/IL-1β Axis Activation: A Scooping Review. 天然免疫抑制剂治疗慢性失眠靶向NLRP3/胱天蛋白酶1/IL-1β轴激活诱导的炎症反应:综述。
IF 6.2
Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology Pub Date : 2023-09-01 Epub Date: 2023-08-08 DOI: 10.1007/s11481-023-10078-7
Zahra Aghelan, Somayeh Pashaee, Seyed Hosein Abtahi, Saeed Karima, Habibolah Khazaie, Mohammad Ezati, Reza Khodarahmi
{"title":"Natural Immunosuppressants as a Treatment for Chronic Insomnia Targeting the Inflammatory Response Induced by NLRP3/caspase-1/IL-1β Axis Activation: A Scooping Review.","authors":"Zahra Aghelan,&nbsp;Somayeh Pashaee,&nbsp;Seyed Hosein Abtahi,&nbsp;Saeed Karima,&nbsp;Habibolah Khazaie,&nbsp;Mohammad Ezati,&nbsp;Reza Khodarahmi","doi":"10.1007/s11481-023-10078-7","DOIUrl":"10.1007/s11481-023-10078-7","url":null,"abstract":"<p><p>Chronic insomnia is an inflammatory-related disease with an important pathological basis for various diseases which is a serious threat to a person's physical and mental health. So far, many hypotheses have been proposed to explain the pathogenesis of insomnia, among which inflammatory mechanisms have become the focus of scientific attention. In this regard, the aim of the present scooping review is to evaluate the potential benefits of natural compounds in treatment of chronic insomnia targeting nucleotide-binding oligomerization domain (NOD)-like receptor-pyrin-containing protein 3 (NLRP3)/caspase-1/IL-1β axis as one of the most important activators of inflammatory cascades. The data show that compounds that have the potential to cause inflammation induce sleep disorders, and that inflammatory mediators are key molecules in regulating the sleep-related activity of neurons. In the inflammatory process of insomnia, the role of NLRP3 in the pathogenesis of insomnia has been gradually considered by researchers. NLRP3 is an intracellular sensor that recognizes the widest range of pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs). After identification and binding to damage factors, NLRP3 inflammasome is assembled to activate the caspase-1 and IL-1β. Increased production and secretion of IL-1β may be involved in central nervous system dysregulation of physiological sleep. The current scooping review reports the potential benefits of natural compounds that target NLRP3 inflammasome pathway activity and highlights the hypothesis which NLRP3 /caspase-1/IL-1β may serve as a potential therapeutic target for managing inflammation and improving symptoms in chronic insomnia.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":" ","pages":"294-309"},"PeriodicalIF":6.2,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10311253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential Therapeutic Effects of Policosanol from Insect Wax on Caenorhabditis elegans Models of Parkinson's Disease. 昆虫蜡中聚多糖醇对秀丽隐杆线虫帕金森病模型的潜在治疗作用。
Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology Pub Date : 2023-06-01 Epub Date: 2023-01-13 DOI: 10.1007/s11481-022-10057-4
Chenjing Ma, Ying Feng, Xian Li, Long Sun, Zhao He, Jin Gan, Minjie He, Xin Zhang, Xiaoming Chen
{"title":"Potential Therapeutic Effects of Policosanol from Insect Wax on Caenorhabditis elegans Models of Parkinson's Disease.","authors":"Chenjing Ma,&nbsp;Ying Feng,&nbsp;Xian Li,&nbsp;Long Sun,&nbsp;Zhao He,&nbsp;Jin Gan,&nbsp;Minjie He,&nbsp;Xin Zhang,&nbsp;Xiaoming Chen","doi":"10.1007/s11481-022-10057-4","DOIUrl":"10.1007/s11481-022-10057-4","url":null,"abstract":"<p><p>Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. The standard treatments for PD focus on symptom relief rather than attempting to address the underlying degenerative processes completely. This study aimed to evaluate the potential therapeutic effects of policosanol derived from insect wax (PIW) by investigating improvements in disease symptoms represented in Caenorhabditis elegans models of PD. For our assessments, we used the following three models: NL5901, which is a transgenic model for α-synuclein aggregation; wild-type N2 induced with 6-hydroxydopamine (6-OHDA); and 6-OHDA-induced BZ555 as a model for loss of dopaminergic neurons (DNs). Specifically, we examined the effects of PIW treatment on α-synuclein aggregation, the loss of DNs, lipid abundance, and the lifespan of treated organisms. Further, we examined treatment-related changes in the levels of reactive oxygen species (ROS), malondialdehyde (MDA), adenosine triphosphate (ATP), glutathione S-transferase (GST), and superoxide dismutase (SOD), as well as the mRNA production profiles of relevant genes. A 10 µg/mL dose of PIW reduced the aggregation of α-synuclein in NL5901 and suppressed the loss of DNs in 6-OHDA-induced BZ555. Overall, PIW treatment decreased ROS and MDA levels, restored lipid abundance, and prolonged the lifespans of worms in all the three models, which may be associated with changes in the expression profiles of genes related to cell survival and oxidative stress response pathways. Our findings show that PIW alleviated the symptoms of PD in these models, possibly by regulating the stress responses initiated by injuries such as α-synuclein aggregation or 6-OHDA treatment.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":"18 1-2","pages":"127-144"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10244146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信