Kathleen R Mulka, Suzanne E Queen, Lisa M Mangus, Sarah E Beck, Audrey C Knight, Megan E McCarron, Clarisse V Solis, Arlon J Wizzard, Jyotsna Jayaram, Carlo Colantuoni, Joseph L Mankowski
{"title":"接受抗逆转录病毒疗法的 SIV 感染猕猴脊髓中从神经胶质细胞到神经元的基因表达变化。","authors":"Kathleen R Mulka, Suzanne E Queen, Lisa M Mangus, Sarah E Beck, Audrey C Knight, Megan E McCarron, Clarisse V Solis, Arlon J Wizzard, Jyotsna Jayaram, Carlo Colantuoni, Joseph L Mankowski","doi":"10.1007/s11481-024-10130-0","DOIUrl":null,"url":null,"abstract":"<p><p>Despite antiretroviral therapy (ART), HIV-associated peripheral neuropathy remains one of the most prevalent neurologic manifestations of HIV infection. The spinal cord is an essential component of sensory pathways, but spinal cord sampling and evaluation in people with HIV has been very limited, especially in those on ART. The SIV/macaque model allows for assessment of the spinal cord at key time points throughout infection with and without ART. In this study, RNA was isolated from the spinal cord of uninfected, SIV+, and SIV + ART animals to track alterations in gene expression using global RNA-seq. Next, the SeqSeek platform was used to map changes in gene expression to specific cell types. Pathway analysis of differentially expressed genes demonstrated that highly upregulated genes in SIV-infected spinal cord aligned with interferon and viral response pathways. Additionally, this upregulated gene set significantly overlapped with those expressed in myeloid-derived cells including microglia. Downregulated genes were involved in cholesterol and collagen biosynthesis, and TGF-b regulation of extracellular matrix. In contrast, enriched pathways identified in SIV + ART animals included neurotransmitter receptors and post synaptic signaling regulators, and transmission across chemical synapses. SeqSeek analysis showed that upregulated genes were primarily expressed by neurons rather than glia. These findings indicate that pathways activated in the spinal cord of SIV + ART macaques are predominantly involved in neuronal signaling rather than proinflammatory pathways. This study provides the basis for further evaluation of mechanisms of SIV infection + ART within the spinal cord with a focus on therapeutic interventions to maintain synaptodendritic homeostasis.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":"19 1","pages":"28"},"PeriodicalIF":6.2000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Switch from Glial to Neuronal Gene Expression Alterations in the Spinal Cord of SIV-infected Macaques on Antiretroviral Therapy.\",\"authors\":\"Kathleen R Mulka, Suzanne E Queen, Lisa M Mangus, Sarah E Beck, Audrey C Knight, Megan E McCarron, Clarisse V Solis, Arlon J Wizzard, Jyotsna Jayaram, Carlo Colantuoni, Joseph L Mankowski\",\"doi\":\"10.1007/s11481-024-10130-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite antiretroviral therapy (ART), HIV-associated peripheral neuropathy remains one of the most prevalent neurologic manifestations of HIV infection. The spinal cord is an essential component of sensory pathways, but spinal cord sampling and evaluation in people with HIV has been very limited, especially in those on ART. The SIV/macaque model allows for assessment of the spinal cord at key time points throughout infection with and without ART. In this study, RNA was isolated from the spinal cord of uninfected, SIV+, and SIV + ART animals to track alterations in gene expression using global RNA-seq. Next, the SeqSeek platform was used to map changes in gene expression to specific cell types. Pathway analysis of differentially expressed genes demonstrated that highly upregulated genes in SIV-infected spinal cord aligned with interferon and viral response pathways. Additionally, this upregulated gene set significantly overlapped with those expressed in myeloid-derived cells including microglia. Downregulated genes were involved in cholesterol and collagen biosynthesis, and TGF-b regulation of extracellular matrix. In contrast, enriched pathways identified in SIV + ART animals included neurotransmitter receptors and post synaptic signaling regulators, and transmission across chemical synapses. SeqSeek analysis showed that upregulated genes were primarily expressed by neurons rather than glia. These findings indicate that pathways activated in the spinal cord of SIV + ART macaques are predominantly involved in neuronal signaling rather than proinflammatory pathways. This study provides the basis for further evaluation of mechanisms of SIV infection + ART within the spinal cord with a focus on therapeutic interventions to maintain synaptodendritic homeostasis.</p>\",\"PeriodicalId\":73858,\"journal\":{\"name\":\"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology\",\"volume\":\"19 1\",\"pages\":\"28\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11481-024-10130-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11481-024-10130-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
尽管采用了抗逆转录病毒疗法(ART),HIV 相关性周围神经病变仍然是 HIV 感染最常见的神经系统表现之一。脊髓是感觉通路的重要组成部分,但对艾滋病病毒感染者的脊髓取样和评估非常有限,尤其是对接受抗逆转录病毒疗法的患者。通过 SIV/猕猴桃模型,可以在接受抗逆转录病毒疗法和不接受抗逆转录病毒疗法的整个感染过程中的关键时间点对脊髓进行评估。在这项研究中,从未感染、SIV+ 和 SIV + ART 动物的脊髓中分离出 RNA,利用全局 RNA-seq 追踪基因表达的变化。然后,利用 SeqSeek 平台将基因表达的变化映射到特定的细胞类型。对差异表达基因的通路分析表明,SIV 感染脊髓中的高上调基因与干扰素和病毒反应通路一致。此外,这种上调基因集与包括小胶质细胞在内的髓源性细胞中表达的基因明显重叠。下调基因涉及胆固醇和胶原蛋白的生物合成,以及 TGF-b 对细胞外基质的调控。与此相反,在 SIV + ART 动物中发现的丰富通路包括神经递质受体和突触后信号调节器,以及化学突触间的传递。SeqSeek 分析显示,上调基因主要由神经元而非神经胶质表达。这些发现表明,SIV+ART猕猴脊髓中激活的通路主要涉及神经元信号传导,而不是促炎通路。这项研究为进一步评估脊髓内SIV感染+ART的机制提供了基础,其重点是维持突触树突平衡的治疗干预。
A Switch from Glial to Neuronal Gene Expression Alterations in the Spinal Cord of SIV-infected Macaques on Antiretroviral Therapy.
Despite antiretroviral therapy (ART), HIV-associated peripheral neuropathy remains one of the most prevalent neurologic manifestations of HIV infection. The spinal cord is an essential component of sensory pathways, but spinal cord sampling and evaluation in people with HIV has been very limited, especially in those on ART. The SIV/macaque model allows for assessment of the spinal cord at key time points throughout infection with and without ART. In this study, RNA was isolated from the spinal cord of uninfected, SIV+, and SIV + ART animals to track alterations in gene expression using global RNA-seq. Next, the SeqSeek platform was used to map changes in gene expression to specific cell types. Pathway analysis of differentially expressed genes demonstrated that highly upregulated genes in SIV-infected spinal cord aligned with interferon and viral response pathways. Additionally, this upregulated gene set significantly overlapped with those expressed in myeloid-derived cells including microglia. Downregulated genes were involved in cholesterol and collagen biosynthesis, and TGF-b regulation of extracellular matrix. In contrast, enriched pathways identified in SIV + ART animals included neurotransmitter receptors and post synaptic signaling regulators, and transmission across chemical synapses. SeqSeek analysis showed that upregulated genes were primarily expressed by neurons rather than glia. These findings indicate that pathways activated in the spinal cord of SIV + ART macaques are predominantly involved in neuronal signaling rather than proinflammatory pathways. This study provides the basis for further evaluation of mechanisms of SIV infection + ART within the spinal cord with a focus on therapeutic interventions to maintain synaptodendritic homeostasis.