{"title":"Preface.","authors":"Dr Vijay Kumar Prajapati","doi":"10.1016/S1876-1623(25)00019-7","DOIUrl":"https://doi.org/10.1016/S1876-1623(25)00019-7","url":null,"abstract":"","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"144 ","pages":"xix"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143466654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring immunotherapy to control human infectious diseases.","authors":"Praveen Rai, Sanjana Mehrotra, Vijay Kumar Prajapati","doi":"10.1016/bs.apcsb.2024.10.010","DOIUrl":"https://doi.org/10.1016/bs.apcsb.2024.10.010","url":null,"abstract":"<p><p>Infectious diseases continue to pose significant challenges to global health, especially with the rise of antibiotic resistance and emerging pathogens. Traditional treatments, while effective, are often limited in the face of rapidly evolving pathogens. Immunotherapy, which harnesses and enhances the body's immune response, offers a promising alternative to conventional approaches for the treatment of infectious diseases. By employing use of monoclonal antibodies, vaccines, cytokine therapies, and immune checkpoint inhibitors, immunotherapy has demonstrated considerable potential in overcoming treatment resistance and improving patient outcomes. Key innovations, including the development of mRNA vaccines, use of immune modulators, adoptive cell transfer, and chimeric antigen receptor (CAR)-T cell therapy are paving the way for more targeted pathogen clearance. Further, combining immunotherapy with conventional antibiotic treatment has demonstrated effectiveness against drug-resistant strains, but this chapter explores the evolving field of immunotherapy for the treatment of bacterial, viral, fungal, and parasitic infections. The chapter also explores the recent breakthroughs and ongoing clinical trials in infectious disease immunotherapy.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"144 ","pages":"389-429"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143466726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ravi Chauhan, Ashna Gupta, Gunjan Dagar, Shalini Sharma, Hana Q Sadida, Sheema Hashem, Ann M Verghese, Mukesh Tanwar, Muzafar A Macha, Shahab Uddin, Ammira S Al-Shabeeb Akil, Tej K Pandita, Ajaz A Bhat, Mayank Singh
{"title":"Role of lamins in cellular physiology and cancer.","authors":"Ravi Chauhan, Ashna Gupta, Gunjan Dagar, Shalini Sharma, Hana Q Sadida, Sheema Hashem, Ann M Verghese, Mukesh Tanwar, Muzafar A Macha, Shahab Uddin, Ammira S Al-Shabeeb Akil, Tej K Pandita, Ajaz A Bhat, Mayank Singh","doi":"10.1016/bs.apcsb.2024.06.002","DOIUrl":"https://doi.org/10.1016/bs.apcsb.2024.06.002","url":null,"abstract":"<p><p>Lamins, which are crucial type V intermediate filament proteins found in the nuclear lamina, are essential for maintaining the stability and function of the nucleus in higher vertebrates. They are classified into A- and B-types, and their distinct expression patterns contribute to cellular survival, development, and functionality. Lamins emerged during the transition from open to closed mitosis, with their complexity increasing alongside organism evolution. Derived from the LMNA, LMNB1, and LMNB2 genes, lamins undergo alternative splicing to produce seven variants, influencing cellular processes such as stiffness, chromatin condensation, and cell cycle regulation. The lamin network interacts with the cytoskeleton via Linkers of the nucleoskeleton to the cytoskeleton (LINC) complexes, playing a critical role in cellular stability and mechanotransduction. Lamins also regulate active transport into and out of the nucleus, affecting nuclear integrity, positioning, DNA maintenance, and gene expression. Genetic mutations in lamin genes lead to laminopathies, highlighting their functional significance and organizational roles. Changes in lamin subtype composition within the nuclear lamina have significant implications for cancer development, impacting cellular stiffness, mobility, and the Epithelial-to-Mesenchymal Transition (EMT). Lamin A/C, in particular, plays multifaceted roles in cancer biology, influencing progression, metastasis, and therapy response through interactions with various proteins and pathways. Dysregulated lamin expression is commonly observed in cancers, suggesting their potential as diagnostic and prognostic markers. This chapter underscores the pivotal roles of lamins in nuclear architecture and cancer biology, emphasizing their impact on cellular functions and disease pathology. Understanding lamin behavior and regulation mechanisms holds promise for developing novel diagnostic tools and targeted therapies in cancer treatment.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"143 ","pages":"119-153"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"From infection to remedy: Harnessing oncolytic viruses in cancer treatment.","authors":"Sramona Kar, Sanjana Mehrotra, Vijay Kumar Prajapati","doi":"10.1016/bs.apcsb.2024.10.012","DOIUrl":"https://doi.org/10.1016/bs.apcsb.2024.10.012","url":null,"abstract":"<p><p>Oncolytic virus (OV) mediated immunotherapy is one of the recent techniques used to treat higher grade cancers where conventional therapies like chemotherapy, radiation fail. OVs as a therapeutic tool show high efficacy and fewer side effects than conventional methods as supported by multiple preclinical and clinical studies since they are engineered to target tumours. In this chapter, we discuss the modifications in viruses to make them oncolytic, types of strains commonly administered, mechanisms employed by viruses to specifically target and eradicate malignancy and progress achieved as reported in case studies (preclinical and clinical trials). OVs also face some unique challenges with respect to the malignancy being treated and the varied pathogen exposure of the patients, which is also highlighted here. Since pathogen exposure varies according to population dynamics worldwide, chances of generating a non-specific recall response to an OV cannot be negated. Lastly, the future perspectives and ongoing practises of combination therapies are discussed as they provide a leading edge over monotherapies in terms of tumour clearance, blocking metastasis and enhancing patient survival. Efforts undertaken to overcome current challenges are also highlighted.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"144 ","pages":"213-257"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143466737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Immunotherapy in the management of inflammatory bone loss in osteoporosis.","authors":"Leena Sapra, Rupesh K Srivastava","doi":"10.1016/bs.apcsb.2024.10.013","DOIUrl":"https://doi.org/10.1016/bs.apcsb.2024.10.013","url":null,"abstract":"<p><p>Osteoporosis, a progressive skeletal disorder characterized by decreased bone mass and increased fracture risk, has traditionally been treated with pharmacological agents targeting bone remodeling. However, emerging research highlights the critical role of immune system in regulating bone metabolism, introducing the concept of Osteoimmunology. Chronic low-grade inflammation is now recognized as a significant contributor to osteoporosis, particularly in postmenopausal women and the elderly. Immune cells, such as T cells and B cells, and their secreted cytokines directly influence bone resorption and formation, tipping the balance toward net bone loss in inflammatory environments. Immunotherapy, a treatment modality traditionally associated with cancer and autoimmune diseases, is now gaining attention in the management of osteoporosis. By targeting immune dysregulation and reducing inflammatory bone loss, immunotherapies offer a novel approach to treating osteoporosis that goes beyond merely inhibiting bone resorption or promoting bone formation. This therapeutic strategy includes monoclonal antibodies targeting inflammatory cytokines, cell-based therapies to enhance the function of regulatory T and B cells, and interventions aimed at modulating immune pathways linked to bone health. This chapter reviews the emerging role of immunotherapy in addressing inflammatory bone loss in osteoporosis. Present chapter also explores the underlying immune mechanisms contributing to bone degradation, current immunotherapeutic strategies under investigation, and the potential of these approaches to revolutionize the management of osteoporosis.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"144 ","pages":"461-491"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143466747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transcription factors and genome biases in polyploid crops.","authors":"Raminder Kaur, Vikas Rishi","doi":"10.1016/bs.apcsb.2024.09.005","DOIUrl":"https://doi.org/10.1016/bs.apcsb.2024.09.005","url":null,"abstract":"<p><p>Nuclear protein transcription factors (TFs) regulate all biological processes in plants and are necessary for gene regulation. The transcription of genes during plant growth and development and their response to environmental cues are regulated by TF binding to specific promoter regions in the genomic DNA. Polyploid plants with several sets of chromosomes frequently display intricate genomic biases concerning TF expression. One or more subgenomes may dominate in terms of gene expression, leading to subgenome biases or dominance. These biases can influence various aspects of the crop's biology, including its growth, development, and adaptation. Advances in genomics have speed up the improvement of many important agricultural diploid crops, yet comparable endeavours in polyploid crops have been more challenging. This challenge primarily stems from the large size and intricate nature of the complex genome in polyploid crops, along with the need for comprehensive genome assembly data for such crop varieties as bread wheat, cotton and sugarcane. Several studies have evaluated the biased/asymmetric gene expression patterns, including TFs, within the polyploid crop genomes. In many polyploid crops, not all homologues of TF genes contribute equally to the phenotype. Here, we have examined polyploid crop plants for homeolog gene expression, emphasizing TFs. It is observed that the polyploids retain many gene alleles as functional homeologs that define important features involved in stress response, sugar metabolism, and fibre formation. The possible molecular mechanism describing the structural and epigenetic basis of differential subgenomic TF expression in polyploids is discussed.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"143 ","pages":"301-321"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amar Jeet Yadav, Khushboo Bhagat, Akshit Sharma, Aditya K Padhi
{"title":"Navigating the landscape: A comprehensive overview of computational approaches in therapeutic antibody design and analysis.","authors":"Amar Jeet Yadav, Khushboo Bhagat, Akshit Sharma, Aditya K Padhi","doi":"10.1016/bs.apcsb.2024.10.011","DOIUrl":"https://doi.org/10.1016/bs.apcsb.2024.10.011","url":null,"abstract":"<p><p>Immunotherapy, harnessing components like antibodies, cells, and cytokines, has become a cornerstone in treating diseases such as cancer and autoimmune disorders. Therapeutic antibodies, in particular, have transformed modern medicine, providing a targeted approach that destroys disease-causing cells while sparing healthy tissues, thereby reducing the side effects commonly associated with chemotherapy. Beyond oncology, these antibodies also hold promise in addressing chronic infections where conventional therapeutics may fall short. However, antibodies identified through in vivo or in vitro methods often require extensive engineering to enhance their therapeutic potential. This optimization process, aimed at improving affinity, specificity, and reducing immunogenicity, is both challenging and costly, often involving trade-offs between critical properties. Traditional methods of antibody development, such as hybridoma technology and display techniques, are resource-intensive and time-consuming. In contrast, computational approaches offer a faster, more efficient alternative, enabling the precise design and analysis of therapeutic antibodies. These methods include sequence and structural bioinformatics approaches, next-generation sequencing-based data mining, machine learning algorithms, systems biology, immuno-informatics, and integrative approaches. These approaches are advancing the field by providing new insights and enhancing the accuracy of antibody design and analysis. In conclusion, computational approaches are essential in the development of therapeutic antibodies, significantly improving the precision and speed of discovery, optimization, and validation. Integrating these methods with experimental approaches accelerates therapeutic antibody development, paving the way for innovative strategies and treatments for various diseases ranging from cancers to autoimmune and infectious diseases.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"144 ","pages":"33-76"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143466651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Host directed immunotherapy for chronic infections and cancer.","authors":"Rahul Tiwari, Vishal Kumar Singh, Vibhav Gautam, Sanjana Mehrotra, Rajiv Kumar","doi":"10.1016/bs.apcsb.2024.10.009","DOIUrl":"https://doi.org/10.1016/bs.apcsb.2024.10.009","url":null,"abstract":"<p><p>Host-directed immunotherapy (HDI) is emerging as a transformative strategy in managing chronic diseases by leveraging the host's immune system to combat disease. This innovative approach has shown promise in a range of conditions, including cancer and parasitic infections. In oncology, HDI aims to enhance the body's natural immune response against cancer cells through mechanisms such as immune checkpoint inhibition, monoclonal antibodies, and cytokine therapies. These strategies are designed to boost the immune system's ability to recognize and destroy tumors, improving patient outcomes and offering alternatives to traditional cancer treatments. Similarly, in parasitic infections, HDI focuses on strengthening the host's immune defenses to control and eradicate those infections. For diseases like malaria, leishmaniasis, and Chagas disease, HDI strategies may involve adjuvants or immune modulators that amplify the body's ability to target and eliminate parasites. By optimizing immune responses and reducing reliance on conventional treatments, HDI holds the potential to revolutionize therapeutic approaches across various chronic diseases. This chapter highlights the flexibility and potential of HDI in advancing treatments, offering novel ways for improving patient care and disease management.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"144 ","pages":"355-388"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143466743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"From past to present: The evolution of immunotherapy and its modern modalities.","authors":"Surbhi Dadwal, Sarthak Dhar, Kirti Baghel, Amit Mishra, Sanjana Mehrotra, Vijay Kumar Prajapati","doi":"10.1016/bs.apcsb.2024.10.015","DOIUrl":"https://doi.org/10.1016/bs.apcsb.2024.10.015","url":null,"abstract":"<p><p>Immunotherapy is emerging as a novel and reliable therapeutic technique for treating diseases such as autoimmunity, HIV/AIDS, allergy and cancers. This approach works by modulating the patient's immune system, activating both the innate and humoral branches to combat life-threatening diseases. The foundation of immunotherapy began with the discovery and development of \"serum therapy\" by German physiologist Emil Von Behring who received the Nobel Prize in 1901 for his contributions to the treatment of diphtheria. Around the same time, Dr. William Coley expanded the field for cancer treatment by developing the first immune based cure for sarcomas using attenuated strains of bacteria injected directly into patient's tumours. As medical science advanced, a broader understanding of the immune system and its components led to the emergence of different immunotherapeutic techniques. These include adoptive cell transfer therapy, cytokine therapy, cancer vaccines, and antibody-drug conjugates. The chapter provides a comprehensive understanding of the history and the current techniques used in immunotherapy, detailing the principles behind their mechanisms and the types of diseases tackled by each immunotherapeutic technique. By examining the journey from early discoveries to modern advancements, the chapter highlights the transformative impact of immunotherapy on medical science and patient care.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"144 ","pages":"1-32"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143466741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Histone deacetylase's regulates Tau function in Alzheimer's disease.","authors":"Subashchandrabose Chinnathambi","doi":"10.1016/bs.apcsb.2024.09.008","DOIUrl":"https://doi.org/10.1016/bs.apcsb.2024.09.008","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a prevalent neurodegenerative disease associated with dementia and neuronal impairments in brain. AD is characterized histopathologically by two hallmark lesions: abnormally phosphorylated Tau inside neurons as intracellular NFTs and extracellular accumulation of amyloid β peptide (Aβ). Furthermore, it is unable to clarify the distinction between the brief association between the development and build-up of Aβ and the commencement of illness. Additionally, a number of experimental findings suggest that symptoms related to Aβ may only manifest within the framework of anabatic Tauopathies. Tau, a natively unfolded protein, essentially involved in microtubule binding and assembly. Tau protein consists of truncated segment and the purpose of this truncated fragment is to initiate and promote the conversion of soluble Tau into aggregates. The most common aberrant posttranslational change found in Neuro Fibrillary Tangles is hyperphosphorylation, which is essentially composed of aggregated Tau. Tau phosphorylation and acetylation of Tau protein at the locations controlled by histone deacetylase 6 compete, which modulates Tau function. Considering the potential benefits of targeting HDAC6 in AD, we propose focusing on the role of HDAC6 in regulating Tau functions and the other targets are the therapeutic understanding of AD.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"143 ","pages":"339-361"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}