SUMO抑制阿尔茨海默病中的Tau聚集。

3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology
Subashchandrabose Chinnathambi, Nagaraj Rangappa
{"title":"SUMO抑制阿尔茨海默病中的Tau聚集。","authors":"Subashchandrabose Chinnathambi, Nagaraj Rangappa","doi":"10.1016/bs.apcsb.2025.02.001","DOIUrl":null,"url":null,"abstract":"<p><p>Tau is a microtubule-binding, hydrophilic protein and appears randomly coiled in circular dichroism spectra. Tau can have many post-translational modifications such as phosphorylation, acetylation, SUMOylation, glycation, ubiquitinylation, etc. The abnormal phosphorylation of Tau lowers its affinity to bind the microtubules, causing to neuronal instability. Hyperphosphorylated Tau can get detach from the microtubules and get aggregate in neuronal cell body to form a neurofibrillary tangle, which leads to weaken axonal transport and cause synaptic dysfunction. Tau itself is a SUMO-1 target protein and the modified lysine has been identified as the K340 located within 4R-Tau. The interaction between Tau and SUMO-1 was confirmed by an independent study, by showing that the SUMO-1 immunoreactivity is co-localized with phosphorylated Tau. In addition to this, Tau can also be ubiquitinated and degraded by the proteasome through both ubiquitin-dependent and ubiquitin-independent pathways. Our study shows that SUMOylation at lysine K340 stimulates Tau phosphorylation and inhibits ubiquitination-mediated Tau degradation, thus favouring its aggregation.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"147 ","pages":"355-374"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SUMO inhibits Tau aggregation in Alzheimer's disease.\",\"authors\":\"Subashchandrabose Chinnathambi, Nagaraj Rangappa\",\"doi\":\"10.1016/bs.apcsb.2025.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tau is a microtubule-binding, hydrophilic protein and appears randomly coiled in circular dichroism spectra. Tau can have many post-translational modifications such as phosphorylation, acetylation, SUMOylation, glycation, ubiquitinylation, etc. The abnormal phosphorylation of Tau lowers its affinity to bind the microtubules, causing to neuronal instability. Hyperphosphorylated Tau can get detach from the microtubules and get aggregate in neuronal cell body to form a neurofibrillary tangle, which leads to weaken axonal transport and cause synaptic dysfunction. Tau itself is a SUMO-1 target protein and the modified lysine has been identified as the K340 located within 4R-Tau. The interaction between Tau and SUMO-1 was confirmed by an independent study, by showing that the SUMO-1 immunoreactivity is co-localized with phosphorylated Tau. In addition to this, Tau can also be ubiquitinated and degraded by the proteasome through both ubiquitin-dependent and ubiquitin-independent pathways. Our study shows that SUMOylation at lysine K340 stimulates Tau phosphorylation and inhibits ubiquitination-mediated Tau degradation, thus favouring its aggregation.</p>\",\"PeriodicalId\":7376,\"journal\":{\"name\":\"Advances in protein chemistry and structural biology\",\"volume\":\"147 \",\"pages\":\"355-374\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in protein chemistry and structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.apcsb.2025.02.001\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in protein chemistry and structural biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.apcsb.2025.02.001","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

Tau是一种微管结合的亲水蛋白,在圆二色光谱中随机卷曲。Tau蛋白可发生多种翻译后修饰,如磷酸化、乙酰化、sumo化、糖基化、泛素化等。Tau蛋白的异常磷酸化降低了其与微管结合的亲和力,导致神经元不稳定。过度磷酸化的Tau可以从微管中脱离,聚集在神经元细胞体中形成神经原纤维缠结,导致轴突运输减弱,引起突触功能障碍。Tau本身是SUMO-1的靶蛋白,修饰的赖氨酸已被确定为位于4R-Tau中的K340。一项独立研究证实了Tau和SUMO-1之间的相互作用,表明SUMO-1的免疫反应性与磷酸化的Tau共定位。除此之外,Tau也可以通过泛素依赖和非泛素依赖两种途径被蛋白酶体泛素化和降解。我们的研究表明,赖氨酸K340的SUMOylation刺激Tau磷酸化并抑制泛素化介导的Tau降解,从而有利于其聚集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SUMO inhibits Tau aggregation in Alzheimer's disease.

Tau is a microtubule-binding, hydrophilic protein and appears randomly coiled in circular dichroism spectra. Tau can have many post-translational modifications such as phosphorylation, acetylation, SUMOylation, glycation, ubiquitinylation, etc. The abnormal phosphorylation of Tau lowers its affinity to bind the microtubules, causing to neuronal instability. Hyperphosphorylated Tau can get detach from the microtubules and get aggregate in neuronal cell body to form a neurofibrillary tangle, which leads to weaken axonal transport and cause synaptic dysfunction. Tau itself is a SUMO-1 target protein and the modified lysine has been identified as the K340 located within 4R-Tau. The interaction between Tau and SUMO-1 was confirmed by an independent study, by showing that the SUMO-1 immunoreactivity is co-localized with phosphorylated Tau. In addition to this, Tau can also be ubiquitinated and degraded by the proteasome through both ubiquitin-dependent and ubiquitin-independent pathways. Our study shows that SUMOylation at lysine K340 stimulates Tau phosphorylation and inhibits ubiquitination-mediated Tau degradation, thus favouring its aggregation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in protein chemistry and structural biology
Advances in protein chemistry and structural biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
7.40
自引率
0.00%
发文量
66
审稿时长
>12 weeks
期刊介绍: Published continuously since 1944, The Advances in Protein Chemistry and Structural Biology series has been the essential resource for protein chemists. Each volume brings forth new information about protocols and analysis of proteins. Each thematically organized volume is guest edited by leading experts in a broad range of protein-related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信