From antibodies to nanobodies: The next frontier in cancer theranostics for solid tumors.

3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology
Sanjana Mehrotra, Navdeep Kaur, Sukhpreet Kaur, Kawaljit Matharoo, Rajeev Kumar Pandey
{"title":"From antibodies to nanobodies: The next frontier in cancer theranostics for solid tumors.","authors":"Sanjana Mehrotra, Navdeep Kaur, Sukhpreet Kaur, Kawaljit Matharoo, Rajeev Kumar Pandey","doi":"10.1016/bs.apcsb.2024.10.014","DOIUrl":null,"url":null,"abstract":"<p><p>The field of cancer therapeutics has witnessed significant advancements over the past decades, particularly with the emergence of immunotherapy. This chapter traces the transformative journey from traditional antibody-based therapies to the innovative use of nanobodies in the treatment and diagnosis of solid tumors. Nanobodies are the smallest fragments of antibodies derived from camelid immunoglobulins and have redefined the possibilities in cancer theranostics due to their unique structural and functional properties. We provide an overview of the biochemical characteristics of nanobodies that make them particularly suitable for theranostic applications, such as their small size, high stability, enhanced infiltration into the complex tumor microenvironment (TME) and ability to bind with high affinity to epitopes that are inaccessible to conventional antibodies. Further, their ease of modification and functionalization has enabled the development of nanobody-based drug conjugates/toxins and radiolabeled compounds for precise imaging and targeted radiotherapy. We elucidate how nanobodies are being served as valuable tools for prognostic assessment, enabling clinicians to predict disease aggressiveness, monitor treatment response, and stratify patients for personalized therapeutic interventions.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"144 ","pages":"287-329"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in protein chemistry and structural biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.apcsb.2024.10.014","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

The field of cancer therapeutics has witnessed significant advancements over the past decades, particularly with the emergence of immunotherapy. This chapter traces the transformative journey from traditional antibody-based therapies to the innovative use of nanobodies in the treatment and diagnosis of solid tumors. Nanobodies are the smallest fragments of antibodies derived from camelid immunoglobulins and have redefined the possibilities in cancer theranostics due to their unique structural and functional properties. We provide an overview of the biochemical characteristics of nanobodies that make them particularly suitable for theranostic applications, such as their small size, high stability, enhanced infiltration into the complex tumor microenvironment (TME) and ability to bind with high affinity to epitopes that are inaccessible to conventional antibodies. Further, their ease of modification and functionalization has enabled the development of nanobody-based drug conjugates/toxins and radiolabeled compounds for precise imaging and targeted radiotherapy. We elucidate how nanobodies are being served as valuable tools for prognostic assessment, enabling clinicians to predict disease aggressiveness, monitor treatment response, and stratify patients for personalized therapeutic interventions.

从抗体到纳米体:实体瘤癌症治疗的下一个前沿。
在过去的几十年里,癌症治疗领域取得了重大进展,特别是随着免疫疗法的出现。本章追溯了从传统的基于抗体的疗法到纳米体在实体瘤治疗和诊断中的创新应用的变革历程。纳米小体是源自骆驼免疫球蛋白的抗体的最小片段,由于其独特的结构和功能特性,纳米小体重新定义了癌症治疗的可能性。我们概述了纳米体的生化特性,这些特性使它们特别适合于治疗应用,例如它们的小尺寸,高稳定性,增强对复杂肿瘤微环境(TME)的浸润,以及与常规抗体无法进入的表位结合的高亲和力。此外,它们易于修饰和功能化,使得基于纳米体的药物偶联物/毒素和用于精确成像和靶向放疗的放射性标记化合物得以发展。我们阐明了纳米体如何作为有价值的预后评估工具,使临床医生能够预测疾病的侵袭性,监测治疗反应,并对患者进行个性化治疗干预。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in protein chemistry and structural biology
Advances in protein chemistry and structural biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
7.40
自引率
0.00%
发文量
66
审稿时长
>12 weeks
期刊介绍: Published continuously since 1944, The Advances in Protein Chemistry and Structural Biology series has been the essential resource for protein chemists. Each volume brings forth new information about protocols and analysis of proteins. Each thematically organized volume is guest edited by leading experts in a broad range of protein-related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信