Advances in Physics: X最新文献

筛选
英文 中文
Advances toward fieldable atom interferometers 可场原子干涉仪的研究进展
IF 6 2区 物理与天体物理
Advances in Physics: X Pub Date : 2022-03-02 DOI: 10.1080/23746149.2021.1946426
F. Narducci, A. Black, J. H. Burke
{"title":"Advances toward fieldable atom interferometers","authors":"F. Narducci, A. Black, J. H. Burke","doi":"10.1080/23746149.2021.1946426","DOIUrl":"https://doi.org/10.1080/23746149.2021.1946426","url":null,"abstract":"ABSTRACT We review the field of atom interferometer inertial sensors. We begin by reviewing the path integral formulation of atom interferometers and then specialize the treatment to light-pulse atom interferometers and, in particular, gravimeters and gyroscopes. The bulk of the article focuses on the most common type of atom interferometer – the light-pulse interferometer, where the atom optics are composed of light pulses. Our article mainly focuses on a review of advances that aid in the practical implementation of atom interferometers toward gravimetry and inertial navigation. To that end, we develop a navigation model that aids in the connection of parameters and performance of atom interferometers to actual quantities of interest to the navigation community. Practical considerations of atomic inertial sensors, including dynamic range, bandwidth, dead time, and cross-coupling effects are discussed, before we review the field of accelerometer and gyroscope atom interferometers. Finally, we review advances in trapped-atom interferometers. Graphical abstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47623306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 23
Multi-responsive micro/nanogels for optical sensing 用于光学传感的多响应微/纳米凝胶
IF 6 2区 物理与天体物理
Advances in Physics: X Pub Date : 2022-02-27 DOI: 10.1080/23746149.2022.2043185
Tong Shu, Liang Hu, Haley Hunter, Nicholas Balasuriya, Changhao Fang, Qiang Zhang, M. Serpe
{"title":"Multi-responsive micro/nanogels for optical sensing","authors":"Tong Shu, Liang Hu, Haley Hunter, Nicholas Balasuriya, Changhao Fang, Qiang Zhang, M. Serpe","doi":"10.1080/23746149.2022.2043185","DOIUrl":"https://doi.org/10.1080/23746149.2022.2043185","url":null,"abstract":"ABSTRACT Micro/nanogels are unique materials that exhibit the properties of both colloids and hydrogels, i.e. being colloids they exhibit a large specific surface area, while they are hydrophilic and porous allowing them to swell to a great degree with water. Engineering micro/nanogels, through the rational design of various polymer compositions and/or optical structures, can enable them to respond to a myriad of stimuli, e.g. temperature, pH, biomolecules, CO2, light, and electricity. These multi-responsive micro/nanogels and their assemblies, are capable of recognizing and transducing analyte signals into changes in optical properties observable spectroscopically or via the naked eye, allowing their use as optical sensors. In this review, we have highlighted recent state-of-the-art examples of stimuli-responsive micro/nanogel-based systems for optical sensors. Graphical Abstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2022-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41876848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Large-area fabrication of 2D layered topological semimetal films and emerging applications 二维层状拓扑半金属薄膜的大面积制备及其新兴应用
IF 6 2区 物理与天体物理
Advances in Physics: X Pub Date : 2022-02-22 DOI: 10.1080/23746149.2022.2034529
Wenzhuo Zhuang, Zhong X. Chen, Xuefeng Wang
{"title":"Large-area fabrication of 2D layered topological semimetal films and emerging applications","authors":"Wenzhuo Zhuang, Zhong X. Chen, Xuefeng Wang","doi":"10.1080/23746149.2022.2034529","DOIUrl":"https://doi.org/10.1080/23746149.2022.2034529","url":null,"abstract":"ABSTRACT Topological semimetals represent a new class of topological materials, which are highly desirable for both physics frontier and electronics applications owing to their nontrivial band structures and topologically protected surface states. The large-area fabrication of high-quality topological semimetal films is the prerequisite step to realize their practical applications. Its progress has located in its infant period. In this mini-review, we summarize several typical techniques for the fabrication of large-area 2D layered topological semimetal films. The recent progress in these large-area films for electronics, optoelectronics, terahertz, and spintronics applications is briefly reviewed. It is anticipated that with the rapid development of scalable, reliable, and low-cost production techniques and improved functional realization, large-area 2D layered topological semimetals would find the wide commercial applications in electronics, energy and beyond. Graphical Abstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2022-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49428431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Ultrafast dynamics of electrons and phonons: from the two-temperature model to the time-dependent Boltzmann equation 电子和声子的超快动力学:从双温模型到随时间变化的玻尔兹曼方程
IF 6 2区 物理与天体物理
Advances in Physics: X Pub Date : 2022-02-15 DOI: 10.1080/23746149.2022.2095925
F. Caruso, D. Novko
{"title":"Ultrafast dynamics of electrons and phonons: from the two-temperature model to the time-dependent Boltzmann equation","authors":"F. Caruso, D. Novko","doi":"10.1080/23746149.2022.2095925","DOIUrl":"https://doi.org/10.1080/23746149.2022.2095925","url":null,"abstract":"ABSTRACT The advent of pump-probe spectroscopy techniques paved the way to the exploration of ultrafast dynamics of electrons and phonons in crystalline solids. Following photo-absorption of a pump pulse and the initial electronic thermalization, the dynamics of electronic and vibrational degrees of freedom is dominated by electron-phonon and phonon-phonon scattering processes. The two-temperature model (TTM) and its generalizations provide valuable tools to describe these phenomena and the ensuing coupled dynamics of electrons and phonons. While more sophisticated theoretical approaches are nowadays available, the conceptual and computational simplicity of the TTM makes it the method of choice to model thermalization processes in pump-probe spectroscopy, and it keeps being widely applied in both experimental and theoretical studies. In the domain of ab-initio methods, the time-dependent Boltzmann equation (TDBE) ameliorates many of the shortcomings of the TTM and enables a realistic and parameter-free description of ultrafast phenomena with full momentum resolution. After a pedagogical introduction to the TTM and TDBE, in this manuscript we review their application to the description of ultrafast process in solid-state physics and materials science as well as their theoretical foundation. GRAPHICAL ABSTRACT","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47119258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Second order nonlinear frequency generation at the nanoscale in dielectric platforms 介质平台纳米级二阶非线性频率产生
IF 6 2区 物理与天体物理
Advances in Physics: X Pub Date : 2022-01-13 DOI: 10.1080/23746149.2021.2022992
D. Rocco, R. C. Morales, Lei Xu, A. Zilli, V. Vinel, M. Finazzi, M. Celebrano, G. Leo, M. Rahmani, C. Jagadish, H. Tan, D. Neshev, C. de Angelis
{"title":"Second order nonlinear frequency generation at the nanoscale in dielectric platforms","authors":"D. Rocco, R. C. Morales, Lei Xu, A. Zilli, V. Vinel, M. Finazzi, M. Celebrano, G. Leo, M. Rahmani, C. Jagadish, H. Tan, D. Neshev, C. de Angelis","doi":"10.1080/23746149.2021.2022992","DOIUrl":"https://doi.org/10.1080/23746149.2021.2022992","url":null,"abstract":"ABSTRACT Nonlinear frequency generation at the nanoscale is a hot research topic which is gaining increasing attention in nanophotonics. The generation of harmonics in subwavelength volumes is historically associated with the enhancement of electric fields in the interface of plasmonic structures. Recently, new platforms based on high-index dielectric nanoparticles have emerged as promising alternatives to plasmonic structures for many applications. By exploiting optically induced electric and magnetic response via multipolar Mie resonances, dielectric nanoelements may lead to innovative opportunities in nanoscale nonlinear optics. Dielectric optical nanoantennas enlarge the volume of light–matter interaction with respect to their plasmonic counterpart, since the electromagnetic field can penetrate such materials, and therefore producing a high throughput of the generated harmonics. In this review, we first recap recent developments obtained in high refractive index structures, which mainly concern nonlinear second order effects. Moreover, we discuss configurations of dielectric nano-devices where reconfigurable nonlinear behavior is achieved. The main focus of this work concerns efficient Sum Frequency Generation in dielectric nano-platforms. The reported results may serve as a reference for the development of new nonlinear devices for nanophotonic applications. GRAPHICAL ABSTRACT","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47474916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Magnetoelectricity in two-dimensional materials 二维材料中的磁电
IF 6 2区 物理与天体物理
Advances in Physics: X Pub Date : 2022-01-13 DOI: 10.1080/23746149.2022.2032343
Yìlè Yīng, U. Zülicke
{"title":"Magnetoelectricity in two-dimensional materials","authors":"Yìlè Yīng, U. Zülicke","doi":"10.1080/23746149.2022.2032343","DOIUrl":"https://doi.org/10.1080/23746149.2022.2032343","url":null,"abstract":"ABSTRACT Since the initial isolation of few-layer graphene, a plethora of two-dimensional atomic crystals has become available, covering almost all known materials types including metals, semiconductors, superconductors, ferro- and antiferromagnets. These advances have augmented the already existing variety of two-dimensional materials that are routinely realized by quantum confinement in bulk-semiconductor heterostructures. This review focuses on the type of material for which two-dimensional realizations are still being actively sought: magnetoelectrics. We present an overview of current theoretical expectation and experimental progress towards fabricating low-dimensional versions of such materials that can be magnetized by electric charges and polarized electrically by an applied magnetic field – unusual electromagnetic properties that could be the basis for various useful applications. The interplay between spatial confinement and magnetoelectricity is illustrated using the paradigmatic example of magnetic-monopole fields generated by electric charges in or near magnetoelectric media. For the purpose of this discussion, the image-charge method familiar from electrostatics is extended to solve the boundary-value problem for a magnetoelectric medium in the finite-width slab geometry using image dyons, i.e. point objects having both electric and magnetic charges. We discuss salient features of the magnetoelectrically induced fields arising in the thin-width limit. Graphical abstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41835407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Inertial measurement with solid-state spins of nitrogen-vacancy center in diamond 金刚石中氮空位中心的固态自旋惯性测量
IF 6 2区 物理与天体物理
Advances in Physics: X Pub Date : 2022-01-11 DOI: 10.1080/23746149.2021.2004921
Liye Zhao, Xiang Shen, Lumin Ji, Pu Huang
{"title":"Inertial measurement with solid-state spins of nitrogen-vacancy center in diamond","authors":"Liye Zhao, Xiang Shen, Lumin Ji, Pu Huang","doi":"10.1080/23746149.2021.2004921","DOIUrl":"https://doi.org/10.1080/23746149.2021.2004921","url":null,"abstract":"ABSTRACT The nitrogen-vacancy (NV) center is one of the major platforms in the evolving field of quantum technologies. The inertial surveying technology based on NV centers in diamond is a developing field with both scientific and technological importance. Quantum measurement using the solid-state spin of the NV center has demonstrated potential in both high-precision and small-volume low-cost devices. In terms of rotation measurement, the optically detected magnetic resonance has provided a perspective of the rotation measurement mechanism via the solid-state spin of the NV center. A new type of gyroscope based on the solid-state spin in diamond according to the theory has attracted considerable attention. In addition, combined with the ingenious quantum mechanics manipulation and coupling mechanism, acceleration measurement can be achieved through an efficient quantum detection technology of the NV center. This review summarizes the recent research progress in diamond-based inertial measurement, including sensitivity optimization methods for inertial measurement systems based on the NV center. Graphical abstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2022-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45039127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Machine learning in the analysis of biomolecular simulations 生物分子模拟分析中的机器学习
IF 6 2区 物理与天体物理
Advances in Physics: X Pub Date : 2022-01-10 DOI: 10.1080/23746149.2021.2006080
Shreyas S. Kaptan, I. Vattulainen
{"title":"Machine learning in the analysis of biomolecular simulations","authors":"Shreyas S. Kaptan, I. Vattulainen","doi":"10.1080/23746149.2021.2006080","DOIUrl":"https://doi.org/10.1080/23746149.2021.2006080","url":null,"abstract":"ABSTRACT Machine learning has rapidly become a key method for the analysis and organization of large-scale data in all scientific disciplines. In life sciences, the use of machine learning techniques is a particularly appealing idea since the enormous capacity of computational infrastructures generates terabytes of data through millisecond simulations of atomistic and molecular-scale biomolecular systems. Due to this explosion of data, the automation, reproducibility, and objectivity provided by machine learning methods are highly desirable features in the analysis of complex systems. In this review, we focus on the use of machine learning in biomolecular simulations. We discuss the main categories of machine learning tasks, such as dimensionality reduction, clustering, regression, and classification used in the analysis of simulation data. We then introduce the most popular classes of techniques involved in these tasks for the purpose of enhanced sampling, coordinate discovery, and structure prediction. Whenever possible, we explain the scope and limitations of machine learning approaches, and we discuss examples of applications of these techniques. Graphical Abstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48031313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Ultrafast dynamics of helical Dirac fermions in the topological insulators 拓扑绝缘体中螺旋狄拉克费米子的超快动力学
IF 6 2区 物理与天体物理
Advances in Physics: X Pub Date : 2022-01-06 DOI: 10.1080/23746149.2021.2013134
Y. Bai, Na Li, Ruxin Li, P. Liu
{"title":"Ultrafast dynamics of helical Dirac fermions in the topological insulators","authors":"Y. Bai, Na Li, Ruxin Li, P. Liu","doi":"10.1080/23746149.2021.2013134","DOIUrl":"https://doi.org/10.1080/23746149.2021.2013134","url":null,"abstract":"ABSTRACT Three-dimensional topological insulators feature unconventional two-dimensional surface states, the carriers in which are helical Dirac fermions and protected from backscattering. Thus, they exhibit novel electronic response upon illuminate ultrashort and intense laser light. We briefly reviewed recent studies on ultrafast phenomena from the surface of the topological insulators driven by laser pulse ranging from visible to THz frequency. Ultrafast dynamics of Dirac fermions can be excited by helical photons and driven by strong light field. Many unique nonlinear behaviors have been demonstrated, such as the excitation of helicity-dependent photocurrent, the formation of Floquet-Bloch bands, lightwave-driven Dirac currents and the generation of optical high-harmonic emission. This review aimed at understanding the microscopic mechanism of the ultrafast charge and spin dynamics in topological surface states and its prospects for coherent manipulation of Dirac fermions by laser light. GRAPHICAL ABSTRACT","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2022-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46707442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Computational methods and theory for ion channel research. 离子通道研究的计算方法和理论。
IF 7.7 2区 物理与天体物理
Advances in Physics: X Pub Date : 2022-01-01 DOI: 10.1080/23746149.2022.2080587
C Guardiani, F Cecconi, L Chiodo, G Cottone, P Malgaretti, L Maragliano, M L Barabash, G Camisasca, M Ceccarelli, B Corry, R Roth, A Giacomello, B Roux
{"title":"Computational methods and theory for ion channel research.","authors":"C Guardiani, F Cecconi, L Chiodo, G Cottone, P Malgaretti, L Maragliano, M L Barabash, G Camisasca, M Ceccarelli, B Corry, R Roth, A Giacomello, B Roux","doi":"10.1080/23746149.2022.2080587","DOIUrl":"10.1080/23746149.2022.2080587","url":null,"abstract":"<p><p>Ion channels are fundamental biological devices that act as gates in order to ensure selective ion transport across cellular membranes; their operation constitutes the molecular mechanism through which basic biological functions, such as nerve signal transmission and muscle contraction, are carried out. Here, we review recent results in the field of computational research on ion channels, covering theoretical advances, state-of-the-art simulation approaches, and frontline modeling techniques. We also report on few selected applications of continuum and atomistic methods to characterize the mechanisms of permeation, selectivity, and gating in biological and model channels.</p>","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":"7 1","pages":""},"PeriodicalIF":7.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9302924/pdf/nihms-1821206.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10457898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信