{"title":"拓扑绝缘体中螺旋狄拉克费米子的超快动力学","authors":"Y. Bai, Na Li, Ruxin Li, P. Liu","doi":"10.1080/23746149.2021.2013134","DOIUrl":null,"url":null,"abstract":"ABSTRACT Three-dimensional topological insulators feature unconventional two-dimensional surface states, the carriers in which are helical Dirac fermions and protected from backscattering. Thus, they exhibit novel electronic response upon illuminate ultrashort and intense laser light. We briefly reviewed recent studies on ultrafast phenomena from the surface of the topological insulators driven by laser pulse ranging from visible to THz frequency. Ultrafast dynamics of Dirac fermions can be excited by helical photons and driven by strong light field. Many unique nonlinear behaviors have been demonstrated, such as the excitation of helicity-dependent photocurrent, the formation of Floquet-Bloch bands, lightwave-driven Dirac currents and the generation of optical high-harmonic emission. This review aimed at understanding the microscopic mechanism of the ultrafast charge and spin dynamics in topological surface states and its prospects for coherent manipulation of Dirac fermions by laser light. GRAPHICAL ABSTRACT","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2022-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Ultrafast dynamics of helical Dirac fermions in the topological insulators\",\"authors\":\"Y. Bai, Na Li, Ruxin Li, P. Liu\",\"doi\":\"10.1080/23746149.2021.2013134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Three-dimensional topological insulators feature unconventional two-dimensional surface states, the carriers in which are helical Dirac fermions and protected from backscattering. Thus, they exhibit novel electronic response upon illuminate ultrashort and intense laser light. We briefly reviewed recent studies on ultrafast phenomena from the surface of the topological insulators driven by laser pulse ranging from visible to THz frequency. Ultrafast dynamics of Dirac fermions can be excited by helical photons and driven by strong light field. Many unique nonlinear behaviors have been demonstrated, such as the excitation of helicity-dependent photocurrent, the formation of Floquet-Bloch bands, lightwave-driven Dirac currents and the generation of optical high-harmonic emission. This review aimed at understanding the microscopic mechanism of the ultrafast charge and spin dynamics in topological surface states and its prospects for coherent manipulation of Dirac fermions by laser light. GRAPHICAL ABSTRACT\",\"PeriodicalId\":7374,\"journal\":{\"name\":\"Advances in Physics: X\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2022-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Physics: X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1080/23746149.2021.2013134\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physics: X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/23746149.2021.2013134","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Ultrafast dynamics of helical Dirac fermions in the topological insulators
ABSTRACT Three-dimensional topological insulators feature unconventional two-dimensional surface states, the carriers in which are helical Dirac fermions and protected from backscattering. Thus, they exhibit novel electronic response upon illuminate ultrashort and intense laser light. We briefly reviewed recent studies on ultrafast phenomena from the surface of the topological insulators driven by laser pulse ranging from visible to THz frequency. Ultrafast dynamics of Dirac fermions can be excited by helical photons and driven by strong light field. Many unique nonlinear behaviors have been demonstrated, such as the excitation of helicity-dependent photocurrent, the formation of Floquet-Bloch bands, lightwave-driven Dirac currents and the generation of optical high-harmonic emission. This review aimed at understanding the microscopic mechanism of the ultrafast charge and spin dynamics in topological surface states and its prospects for coherent manipulation of Dirac fermions by laser light. GRAPHICAL ABSTRACT
期刊介绍:
Advances in Physics: X is a fully open-access journal that promotes the centrality of physics and physical measurement to modern science and technology. Advances in Physics: X aims to demonstrate the interconnectivity of physics, meaning the intellectual relationships that exist between one branch of physics and another, as well as the influence of physics across (hence the “X”) traditional boundaries into other disciplines including:
Chemistry
Materials Science
Engineering
Biology
Medicine