Ultrafast dynamics of electrons and phonons: from the two-temperature model to the time-dependent Boltzmann equation

IF 7.7 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
F. Caruso, D. Novko
{"title":"Ultrafast dynamics of electrons and phonons: from the two-temperature model to the time-dependent Boltzmann equation","authors":"F. Caruso, D. Novko","doi":"10.1080/23746149.2022.2095925","DOIUrl":null,"url":null,"abstract":"ABSTRACT The advent of pump-probe spectroscopy techniques paved the way to the exploration of ultrafast dynamics of electrons and phonons in crystalline solids. Following photo-absorption of a pump pulse and the initial electronic thermalization, the dynamics of electronic and vibrational degrees of freedom is dominated by electron-phonon and phonon-phonon scattering processes. The two-temperature model (TTM) and its generalizations provide valuable tools to describe these phenomena and the ensuing coupled dynamics of electrons and phonons. While more sophisticated theoretical approaches are nowadays available, the conceptual and computational simplicity of the TTM makes it the method of choice to model thermalization processes in pump-probe spectroscopy, and it keeps being widely applied in both experimental and theoretical studies. In the domain of ab-initio methods, the time-dependent Boltzmann equation (TDBE) ameliorates many of the shortcomings of the TTM and enables a realistic and parameter-free description of ultrafast phenomena with full momentum resolution. After a pedagogical introduction to the TTM and TDBE, in this manuscript we review their application to the description of ultrafast process in solid-state physics and materials science as well as their theoretical foundation. GRAPHICAL ABSTRACT","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physics: X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/23746149.2022.2095925","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 17

Abstract

ABSTRACT The advent of pump-probe spectroscopy techniques paved the way to the exploration of ultrafast dynamics of electrons and phonons in crystalline solids. Following photo-absorption of a pump pulse and the initial electronic thermalization, the dynamics of electronic and vibrational degrees of freedom is dominated by electron-phonon and phonon-phonon scattering processes. The two-temperature model (TTM) and its generalizations provide valuable tools to describe these phenomena and the ensuing coupled dynamics of electrons and phonons. While more sophisticated theoretical approaches are nowadays available, the conceptual and computational simplicity of the TTM makes it the method of choice to model thermalization processes in pump-probe spectroscopy, and it keeps being widely applied in both experimental and theoretical studies. In the domain of ab-initio methods, the time-dependent Boltzmann equation (TDBE) ameliorates many of the shortcomings of the TTM and enables a realistic and parameter-free description of ultrafast phenomena with full momentum resolution. After a pedagogical introduction to the TTM and TDBE, in this manuscript we review their application to the description of ultrafast process in solid-state physics and materials science as well as their theoretical foundation. GRAPHICAL ABSTRACT
电子和声子的超快动力学:从双温模型到随时间变化的玻尔兹曼方程
摘要泵浦探针光谱技术的出现为探索晶体固体中电子和声子的超快动力学铺平了道路。在泵浦脉冲的光吸收和初始电子热化之后,电子和振动自由度的动力学由电子-声子和声子-声子散射过程主导。双温度模型(TTM)及其推广为描述这些现象以及随之而来的电子和声子的耦合动力学提供了有价值的工具。虽然现在有更复杂的理论方法,但TTM的概念和计算简单性使其成为泵浦探针光谱中模拟热化过程的首选方法,并在实验和理论研究中得到广泛应用。在从头算方法领域,含时玻尔兹曼方程(TDBE)改善了TTM的许多缺点,并能够以全动量分辨率对超快现象进行真实且无参数的描述。在对TTM和TDBE进行了教学介绍后,我们在本文中回顾了它们在固体物理学和材料科学中描述超快过程的应用及其理论基础。图形摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Physics: X
Advances in Physics: X Physics and Astronomy-General Physics and Astronomy
CiteScore
13.60
自引率
0.00%
发文量
37
审稿时长
13 weeks
期刊介绍: Advances in Physics: X is a fully open-access journal that promotes the centrality of physics and physical measurement to modern science and technology. Advances in Physics: X aims to demonstrate the interconnectivity of physics, meaning the intellectual relationships that exist between one branch of physics and another, as well as the influence of physics across (hence the “X”) traditional boundaries into other disciplines including: Chemistry Materials Science Engineering Biology Medicine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信