Advances in Polymer Technology最新文献

筛选
英文 中文
Zeolite-Based Anti-corrosion Pigments for Polymer Coatings: A Brief Review 聚合物涂料中的沸石基防腐蚀颜料:简评
IF 2 4区 工程技术
Advances in Polymer Technology Pub Date : 2024-07-21 DOI: 10.1155/2024/6533170
Sergiy Korniy, Mariia-Olena Danyliak, Ivan Zin
{"title":"Zeolite-Based Anti-corrosion Pigments for Polymer Coatings: A Brief Review","authors":"Sergiy Korniy,&nbsp;Mariia-Olena Danyliak,&nbsp;Ivan Zin","doi":"10.1155/2024/6533170","DOIUrl":"https://doi.org/10.1155/2024/6533170","url":null,"abstract":"<div>\u0000 <p>The article provides a brief overview of the use of zeolites as environmentally safe anticorrosion pigments for organic coatings on metals. The number of studies on zeolite-based inhibiting pigments has increased significantly in recent years, due to the need to replace chromates and reduce the content of phosphate corrosion inhibitors. Based on the results available in the literature, an assessment was conducted on the inhibitory properties of complex zeolite pigments obtained by various methods. Emphasis is placed on the advantages and disadvantages of ion exchange modification of zeolites with inhibitory substances and mechanochemical synthesis of pigments. Zeolites have a wide perspective in anticorrosion technologies due to their porous structure, large surface area, high pore volume, and the ability to accumulate inhibitory ions and molecules. Such properties of zeolites make possible their use for the development of self-healing or “smart” polymer coatings. Considering the environmental safety of zeolites and their excellent thermal and chemical stability, anti-corrosion polymer coatings inhibited by zeolite pigments could become an effective environmentally friendly alternative to chromate-based protective coatings. The main trends and prospects for the development of research in this domain are presented.</p>\u0000 </div>","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6533170","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural, Optical, Electrical, and Magnetic Characterization of PC/PEO Blend Incorporated with ZnFe2O4 Nanoparticles 含有 ZnFe2O4 纳米颗粒的 PC/PEO 混合物的结构、光学、电学和磁学特性分析
IF 2 4区 工程技术
Advances in Polymer Technology Pub Date : 2024-07-14 DOI: 10.1155/2024/9443289
H. M. Alhusaiki-Alghamdi
{"title":"Structural, Optical, Electrical, and Magnetic Characterization of PC/PEO Blend Incorporated with ZnFe2O4 Nanoparticles","authors":"H. M. Alhusaiki-Alghamdi","doi":"10.1155/2024/9443289","DOIUrl":"https://doi.org/10.1155/2024/9443289","url":null,"abstract":"<div>\u0000 <p>In this study, zinc ferrite nanoparticles (ZnFe<sub>2</sub>O<sub>4</sub> NPs) were incorporated into a polycarbonate/polyethylene oxide (PC/PEO) blend using the casting method. The resulting blends were subjected to comprehensive analysis using various techniques. X-ray diffraction (XRD) analysis revealed that the presence of ZnFe<sub>2</sub>O<sub>4</sub> nanoparticles had a significant impact on the crystal structure of the PC/PEO blend, leading to a reduction in crystallinity. Fourier-transform infrared (FT-IR) measurements further confirmed the uniform distribution and compatibility of PC and PEO as polymer components, as well as their compatibility with the blend containing ZnFe<sub>2</sub>O<sub>4</sub> NPs. The optical properties of the PC/PEO blend, including band gap and Urbach energy, were quantified using the Kubelka–Munk method. The incorporation of ZnFe<sub>2</sub>O<sub>4</sub> NPs resulted in the formation of sub-band states between the valence and conduction bands, leading to a decrease in the band gap values. Field emission scanning electron microscopy (FESEM) analysis revealed a noticeable modification in the surface roughness, with the addition of ZnFe<sub>2</sub>O<sub>4</sub> NPs resulting in a smoother surface texture. The electrical properties of the blends, including dielectric constant, dielectric loss, and AC conductivity, were measured. The addition of ZnFe<sub>2</sub>O<sub>4</sub> NPs increased the dielectric constant (<i>ε</i>′) at lower frequencies, while it remained relatively stable at higher frequencies due to the localized charge carriers within the polymer blend. The higher values of <i>ε</i>’ observed at lower frequencies can be attributed to the movement of ions, which contributes to enhanced ionic conductivity. The magnetic properties of the blends were evaluated, demonstrating an increase in magnetic saturation upon the addition of ZnFe<sub>2</sub>O<sub>4</sub> NPs. These findings provide valuable insights into the structural, optical, electrical, and magnetic characteristics of PC/PEO blends incorporated with ZnFe<sub>2</sub>O<sub>4</sub> nanoparticles, thereby highlighting their potential for a wide range of technological applications.</p>\u0000 </div>","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/9443289","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141624475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effectiveness of Fish Scale-Derived Collagen as an Alternative Filler Material in the Fabrication of Polyurethane Foam Composites 鱼鳞提取的胶原蛋白作为替代填充材料在聚氨酯泡沫复合材料制造中的功效
IF 2 4区 工程技术
Advances in Polymer Technology Pub Date : 2024-07-11 DOI: 10.1155/2024/1723927
D. Naidoo, S. C. Onwubu, T. H. Mokhothu, P. S. Mdluli, M. U. Makgobole, A. K. Mishra
{"title":"Effectiveness of Fish Scale-Derived Collagen as an Alternative Filler Material in the Fabrication of Polyurethane Foam Composites","authors":"D. Naidoo,&nbsp;S. C. Onwubu,&nbsp;T. H. Mokhothu,&nbsp;P. S. Mdluli,&nbsp;M. U. Makgobole,&nbsp;A. K. Mishra","doi":"10.1155/2024/1723927","DOIUrl":"https://doi.org/10.1155/2024/1723927","url":null,"abstract":"<div>\u0000 <p>This study is based on the utilization of fish scale-derived collagen (FSC) as a potential filler material in polyurethane foam (PUF) composites. The composites were prepared with varying FSC concentrations (2.5%, 5 wt%, and 10 wt%) with the standard PUF matrix, while calcium carbonates in the standard sample (STD) were completely substituted with 50 wt% of collagen. When examining the effects of collagen concentration on mechanical characteristics, complex correlations emerge between tensile strength, elongation, tear resistance, and ductility. The results reveal that the addition of 2.5 wt% FSC increased tensile strength by 12.66% during heat aging, while the addition of 5 wt% at standard temperature increased elongation by 6.65%. Under normal conditions, collagen significantly enhanced the material’s resistance to tearing, demonstrating its potential for long-term durability. Under typical conditions, tear resistance showed notable gains, increasing by 84.85% (50 wt% FSC) and 33% (10 wt% FSC), respectively. The tear resistance, however, diminishes under heat aging for all concentrations. Morphological assessments indicate a consistent closed cell structure across all samples, with collagen potentially contributing to reinforcement. The study supports the sustainable use of fish scale-derived collagen as a filler, addressing waste management challenges and aligning with principles of environmentally conscious material development.</p>\u0000 </div>","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/1723927","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141596989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transforming Polycotton Textile Waste into New Bicomponent Fibers: An Investigative Study 将聚棉纺织废料转化为新型双组分纤维:一项调查研究
IF 2 4区 工程技术
Advances in Polymer Technology Pub Date : 2024-07-10 DOI: 10.1155/2024/5239028
Simon Kronberg, Behnaz Baghaei
{"title":"Transforming Polycotton Textile Waste into New Bicomponent Fibers: An Investigative Study","authors":"Simon Kronberg,&nbsp;Behnaz Baghaei","doi":"10.1155/2024/5239028","DOIUrl":"https://doi.org/10.1155/2024/5239028","url":null,"abstract":"<div>\u0000 <p>This study aimed to develop an innovative recycling method for end-of-life polycotton textiles, eliminating the need for component separation. The use of 1-ethyl-3-methylimidazolium acetate ([EMIM][Ac]) as an ionic liquid solvent facilitated the dissolution of cotton, enabling the creation of a spinning dope containing cellulose and polyester fibers. Successful spinning of bicomponent fibers ensued, followed by comprehensive fiber evaluation. The dissolution of cotton was achieved with [EMIM][Ac], and spinning trials were conducted to devise a suitable method for regenerated cellulose. Tensile tests on the produced cellulosic fibers clearly demonstrated an increase in tensile strength with higher cellulose concentration. The introduction of polyester fibers to the spinning dope, comprising [EMIM][Ac] and cotton, posed challenges to the entire spinning process. Tensile tests on the resulting bicomponent fibers revealed a decrease in tensile strength compared to pure regenerated cellulose fibers. This reduction was attributed to increased voids and irregular polyester fiber distribution, corroborated by microscopy images and a wicking test. It was concluded that the quantity and length of polyester fibers significantly influenced the tensile strength of the bicomponent fibers, with lower concentrations and shorter fibers resulting in higher strength.</p>\u0000 </div>","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5239028","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141584082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heat Treatment Effect on Some Mechanical Properties of FDM-Manufactured PCL Wood-Based Biopolymer 热处理对 FDM 制造的 PCL 木质生物聚合物某些力学性能的影响
IF 2 4区 工程技术
Advances in Polymer Technology Pub Date : 2024-06-20 DOI: 10.1155/2024/7432507
Irina Beșliu-Băncescu, Ioan Tamașag
{"title":"Heat Treatment Effect on Some Mechanical Properties of FDM-Manufactured PCL Wood-Based Biopolymer","authors":"Irina Beșliu-Băncescu,&nbsp;Ioan Tamașag","doi":"10.1155/2024/7432507","DOIUrl":"https://doi.org/10.1155/2024/7432507","url":null,"abstract":"<div>\u0000 <p>The study investigates some 3D printing output parameters of a polycaprolactone (PCL) wood-based biopolymer, a category of materials obtained by embedding wood-derived components within polymeric matrices. These wood-based biopolymers have garnered significant focus in recent years due to their environmental friendliness and vast potential across many different fields. A full factorial design with three independent variables (layer height, printing speed, and heat treatment exposure time) at three levels was considered. The research explores printing speeds higher than the speed ranges typically investigated in the existing scientific literature on FDM 3D printing of wood-based polymers. Additionally, in this study, heat treatment is proposed as a post-processing operation to enhance certain crucial proprieties such as surface quality, hardness, mechanical strength, and accuracy. The findings reveal that heat treatment has a positive influence on the investigated output parameters. Notably, 3D printed samples subjected to heat treatment exhibit an average decrease of 112.1% in surface roughness for a 5-min exposure time and 121.73% for a 10-min exposure time. The surface hardness of the samples also improved after applying the heat treatment. The part hardness improved with an average of 0.65%. Furthermore, significant correlations were observed between layer height and surface quality, hardness, printing speed, and tensile strength. Notably, printing speed contributed significantly to the variation in tensile strength, accounting for 52.77% of the parameter’s variation. These insights shed light on the optimization of 3D printing processes for wood-based biopolymers, paving the way for enhanced performance and applicability across diverse fields.</p>\u0000 </div>","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7432507","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141435597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Filled Nano-Al2O3 and Its Contents on Friction and Wear Properties of Hydrogenated Nitrile Butadiene Rubber 填充纳米 Al2O3 及其含量对氢化丁腈橡胶摩擦和磨损性能的影响
IF 3.1 4区 工程技术
Advances in Polymer Technology Pub Date : 2024-06-06 DOI: 10.1155/2024/5891303
Xinyang Tan, Zenghui Liu
{"title":"Effects of Filled Nano-Al2O3 and Its Contents on Friction and Wear Properties of Hydrogenated Nitrile Butadiene Rubber","authors":"Xinyang Tan,&nbsp;Zenghui Liu","doi":"10.1155/2024/5891303","DOIUrl":"https://doi.org/10.1155/2024/5891303","url":null,"abstract":"<div>\u0000 <p>A new hydrogenated nitrile butadiene rubber (HNBR) material filled with silane-modified nano-Al<sub>2</sub>O<sub>3</sub> is developed in this work. Influence of the nano-Al<sub>2</sub>O<sub>3</sub> and its contents on friction and wear performances of the HNBR materials is investigated. The nano-Al<sub>2</sub>O<sub>3</sub> particles with different contents are added into the HNBR composites. Then, friction and wear tests are conducted using a pin-on-disk tribometer. Scanning electron microscope (SEM) is used to observe wear topography of the HNBR composite surfaces. Attenuated total reflection–Fourier transform infrared (ATR–FTIR) spectroscopy is used to investigate mechanism of nano-Al<sub>2</sub>O<sub>3</sub> reinforcing HNBR. Results show that the filled nano-Al<sub>2</sub>O<sub>3</sub> and its contents significantly affect friction and wear performances. Presence of the nano-Al<sub>2</sub>O<sub>3</sub> obviously decreases friction coefficient and volume wear rate. Friction coefficient and volume wear rate of the composites reduce initially with the increase of nano-Al<sub>2</sub>O<sub>3</sub> content and then increase with further increasing the nano-Al<sub>2</sub>O<sub>3</sub> content. The HNBR material filled by the nano-Al<sub>2</sub>O<sub>3</sub> with the content of 15 phr shows better antifriction and wear performances. SEM results indicate that the HNBR material filled by the nano-Al<sub>2</sub>O<sub>3</sub> of 15 phr presents the best topography of wear surface compared with the HNBR materials filled by other nano-Al<sub>2</sub>O<sub>3</sub> contents in this study. ATR–FTIR results show that mechanism of the nano-Al<sub>2</sub>O<sub>3</sub> reinforcing HNBR for wear resistance is due to the graft reaction between the modified nano-Al<sub>2</sub>O<sub>3</sub> and HNBR to form cross-linking networks around the Al<sub>2</sub>O<sub>3</sub> nanoparticles, and self-polymerization of unsaturated groups on the surface of the nano-Al<sub>2</sub>O<sub>3</sub> to form interpenetrating polymer networks with the HNBR molecular main chains.</p>\u0000 </div>","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5891303","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141264586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bitumen-Biopolymer Materials Modified with Polylactic Acid with Improved Physical and Chemical Properties 用聚乳酸改性的沥青-生物聚合物材料具有更好的物理和化学性质
IF 3.1 4区 工程技术
Advances in Polymer Technology Pub Date : 2024-05-24 DOI: 10.1155/2024/5586270
Assel Jexembayeva, Marat Konkanov, Larisa Mamedova, Lyazat Aruova
{"title":"Bitumen-Biopolymer Materials Modified with Polylactic Acid with Improved Physical and Chemical Properties","authors":"Assel Jexembayeva,&nbsp;Marat Konkanov,&nbsp;Larisa Mamedova,&nbsp;Lyazat Aruova","doi":"10.1155/2024/5586270","DOIUrl":"10.1155/2024/5586270","url":null,"abstract":"<div>\u0000 <p>With the continuous expansion of the global automobile fleet, there is an escalating demand to enhance and maintain current road infrastructure. Given the information provided, there will be a growing demand for bitumen, a key raw material used in the manufacturing of asphalt. Bitumen may account for up to 60% of the total usage in asphalt production. This study aims to determine the effect of different content of polylactic acid (PLA) on the change in the chemical and physical properties of biopolymer bitumen during its modification. This study was carried out by using a sample of petroleum road bitumen from CASPI BITUM (Kazakhstan) and a sample of PLA from Zhejiang Hisun (China). As a part of the research, the change of quality indicators of biopolymer bitumen when adding 4%–10% of PLA to it has been established. The results showed that the values of the average molecular weight and average molar mass increased with increasing the content of PLA in biopolymer bitumen. In particular, when the PLA content in biopolymer bitumen increased up to 10%, the average molecular weight of the biopolymer bitumen increased from 1,263 to 2,759 Mw and the average molar mass increased from 1,215 to 1,395 Mn. It was shown that increasing the PLA content in biopolymer bitumen from 0% to 10% leads to an increase in the softening temperature from 47 to 70°C or ∼ 49%. It was found that all examined samples of biopolymer bitumen are characterized by increased plasticity at 25°C (&gt;100 cm). It has been established that the addition of 8% PLA to bitumen allows one to obtain a biopolymer bitumen of optimal quality. The results obtained can be used to produce road biopolymer bitumen.</p>\u0000 </div>","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5586270","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141099973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modified Bitumen Materials from Kazakhstani Oilfield 哈萨克斯坦油田的改性沥青材料
IF 3.1 4区 工程技术
Advances in Polymer Technology Pub Date : 2024-05-20 DOI: 10.1155/2024/8078021
Guzaliya Faritovna Sagitova, Nurzhan Bauyrzhanovich Ainabekov, Nazarbek Mukhaddasuly Daurenbek, Dina Duisenbekkyzy Assylbekova, Ainur Slambekovna Sadyrbayeva, Aliya Erkegulovna Bitemirova, Gulchekhra Abdyrakhmanovna Takibayeva
{"title":"Modified Bitumen Materials from Kazakhstani Oilfield","authors":"Guzaliya Faritovna Sagitova,&nbsp;Nurzhan Bauyrzhanovich Ainabekov,&nbsp;Nazarbek Mukhaddasuly Daurenbek,&nbsp;Dina Duisenbekkyzy Assylbekova,&nbsp;Ainur Slambekovna Sadyrbayeva,&nbsp;Aliya Erkegulovna Bitemirova,&nbsp;Gulchekhra Abdyrakhmanovna Takibayeva","doi":"10.1155/2024/8078021","DOIUrl":"10.1155/2024/8078021","url":null,"abstract":"<div>\u0000 <p>The oil bitumen BND 90/130, produced at the “LLP SP Caspi Bitum” with the modifier, which consists of copolymer of ethylene with butyl acrylate and glycidyl methacrylate taken in an amount of 0.5–1.6 wt%, and the tire reclaim (4–20 wt%), which is the destructate of mesh elastomers of different chemical nature, was modified; possibility of using the developed bitumen-elastomer binders in road asphalt concrete was justified. Modification of bitumen with a copolymer of ethylene with butyl acrylate and glycidyl methacrylate leads to an improvement in the properties of road bitumen: the softening point, hardness, deformability at low temperatures, elasticity, and adhesion to metal and mineral filler increase. It was shown that ethylene with butyl acrylate and glycidyl methacrylate chemically interacts with the functional groups of bitumen asphaltenes through the epoxy group of glycidyl methacrylate. Analysis of the spectra and group composition indicates an increased content of high molecular weight asphaltenes in the modified bitumen with a slight increase in structuring resins. It has been established that bitumen modified with rubber crumbs of 0.6–1.0 mm in size has high elasticity. The most effective composition of a bitumen-regenerated composite material based on tire reclaim has been determined. In terms of the totality of physicochemical and operational characteristics and comparative cost, the most acceptable is the bitumen-regenerated composition (with a regenerate content of 20%) and is superior in the complex of properties to bitumen modified with an optimal content of ethylene with butyl acrylate and glycidyl methacrylate (1.6%). The technology for modifying bitumen with tire reclaim is less time-consuming, more economically profitable, and environmentally effective, since it utilizes large-tonnage waste of worn-out tires. The resulting bitumen-polymer compositions have a high positive set of properties: softening point, hardness, elasticity, frost resistance, and low-temperature characteristics.</p>\u0000 </div>","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8078021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141122033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of Highly Porous Materials Based on Chitosan/Pectin Interpolyelectrolyte Complex for Wound Healing Application 设计基于壳聚糖/果胶间聚电解质复合物的高多孔材料,用于伤口愈合应用
IF 3.1 4区 工程技术
Advances in Polymer Technology Pub Date : 2024-05-09 DOI: 10.1155/2024/8747902
Aliaksandr Kraskouski, Maksim Mashkin, Viktoryia Kulikouskaya, Viktoryia Savich, Anastasiya Sidarenka, Sergei Pinchuk, Ruibin Li
{"title":"Design of Highly Porous Materials Based on Chitosan/Pectin Interpolyelectrolyte Complex for Wound Healing Application","authors":"Aliaksandr Kraskouski,&nbsp;Maksim Mashkin,&nbsp;Viktoryia Kulikouskaya,&nbsp;Viktoryia Savich,&nbsp;Anastasiya Sidarenka,&nbsp;Sergei Pinchuk,&nbsp;Ruibin Li","doi":"10.1155/2024/8747902","DOIUrl":"10.1155/2024/8747902","url":null,"abstract":"<p>Interpolyelectrolyte complexes (IPECs) of polysaccharides are multifunctional polymer materials that improve the mechanical and physicochemical properties of individual polysaccharides. In this study, highly porous (&gt;90%) materials based on IPECs of versatile natural polysaccharides, chitosan (30 and 1,200 kDa) and pectin, are obtained by freeze-drying technique. To enhance the interaction between chitosan and pectin macromolecules, the latter are chemically functionalized with dialdehyde groups. The chitosan-/aldehyde-functionalized pectin (Chit/AF-Pect) polyelectrolyte complex sponges obtained are characterized using SEM, FTIR spectroscopy, and TGA. The swelling capacity study reveals a higher swelling ratio of IPEC sponges with an increase in both the molecular weight and content of chitosan: for Chit30/AF-Pect, the swelling ratio rises from 327% to 480%, while for Chit1200/AF-Pect, from 681% to 1,066%. Additionally, the in vitro degradation test demonstrates higher stability of Chit1200/AF-Pect sponges in comparison with those of Chit30/AF-Pect: after 4 days of incubation, the weight losses are found to be 9%–16% and 18%–41%, respectively. The cytotoxicity study shows that Chit30/AF-Pect sponges are noncytotoxic, with cell viability values &gt;70%. Furthermore, the Chit30/AF-Pect sponges, obtained at chitosan:pectin weight ratio of 5:1, exhibit bactericidal activity against <i>Escherichia coli</i> BIM B-984 G, <i>Pseudomonas aeruginosa</i> BIM B-807 G, <i>Staphylococcus aureus</i> BIM B-1841, and slightly inhibit the growth of <i>Enterococcus faecalis</i> BIM B-1530 G. These findings indicate that the obtained Chit30/AF-Pect sponges can be used to create wound dressings for wound healing applications.</p>","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8747902","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140935550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of SiO2 Nanoparticles on Polyvinyl Alcohol/Carboxymethyl Cellulose Polymer Blend Films’ Structural, Wettability, Surface Roughness, and Optical Characteristics 二氧化硅纳米粒子对聚乙烯醇/羧甲基纤维素聚合物共混薄膜的结构、润湿性、表面粗糙度和光学特性的影响
IF 3.1 4区 工程技术
Advances in Polymer Technology Pub Date : 2024-05-07 DOI: 10.1155/2024/3623198
T. S. Soliman
{"title":"Effects of SiO2 Nanoparticles on Polyvinyl Alcohol/Carboxymethyl Cellulose Polymer Blend Films’ Structural, Wettability, Surface Roughness, and Optical Characteristics","authors":"T. S. Soliman","doi":"10.1155/2024/3623198","DOIUrl":"10.1155/2024/3623198","url":null,"abstract":"<p>The blend matrix composed of polyvinyl alcohol and carboxymethylcellulose (PVA/CMC) was prepared via the casting method. SiO<sub>2</sub> nanoparticles were added as reinforcement in different amounts (SiO<sub>2</sub> = 1, 2, 3, and 4 wt.%). The study utilized FTIR to examine the alterations in composition and the interplay between the blend matrix and the inclusion of SiO<sub>2</sub>. Also, for the first time, the surface roughness and surface wettability of the PVA/CMC blend matrix were investigated with the addition of SiO<sub>2</sub> using measurements of contact angle and surface roughness parameters. The surface roughness and wettability of the blend matrix increased as the SiO<sub>2</sub> content increased. In addition, the blend matrix optical features were determined by the UV–visible spectrophotometer. Based on the analysis using Tauc’s relation, it was found that the energy bandgap decreases from 5.52 to 5.17 eV (direct transition) and from 4.79 to 4.32 eV (indirect transition) for the PVA/CMC and PVA/CMC/4%SiO<sub>2</sub> blend films, respectively. The refractive index increases from 2.009 to about 2.144 for the PVA/CMC and PVA/CMC/4%SiO<sub>2</sub> blend films, respectively. Furthermore, optical conductivity and dielectric constants were improved for the PVA/CMC blend film after the addition of SiO<sub>2</sub> nanoparticles.</p>","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/3623198","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140935603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信