{"title":"Sharing Weal and Woe: A Commentary on “Gasdermin E Regulates the Stability and Activation of EGFR in Human Non-Small Cell Lung Cancer Cells”","authors":"Limei Xu, Xiangguo Liu","doi":"10.33696/immunology.5.167","DOIUrl":"https://doi.org/10.33696/immunology.5.167","url":null,"abstract":"Abnormal activation of epidermal growth factor receptor (EGFR) promotes the development of Non-Small Cell Lung Cancer Cells (NSCLC). Chemoresistance to tyrosine kinase inhibitors (TKIs), which is elicited by EGFR mutations, is a key challenge for NSCLC treatment. In the present study, we demonstrate a critical role of gasdermin E (GSDME), an important protein for pyroptosis, in the maintenance of EGFR stability and activation. We found that GSDME depletion suppressed the EGFR-mediated proliferation of NSCLC cells in vitro. GSDME knockdown downregulated the protein level of CCND1 and inhibited the phosphorylation of ERK1/2 in NSCLC cells. Mechanistically, both GSDME-FL and GSDME-N fragment physically interacted with EGFR. GSDME interacted with cytoplasmic fragment (CT) of EGFR. GSDME knockdown inhibited EGFR dimerization and phosphorylation at tyrosine 1173 (EGFRY1173), which could activate ERK1/2. GSDME knockdown promoted EGFR degradation and phosphorylation at tyrosine 1045 (EGFRY1045). Importantly, GSDME-FL increased the stability of EGFR, while the GSDME-N fragment induced EGFR degradation. Together, our results demonstrate that the GSDME-EGFR interaction plays an important role in NSCLC development, reveal a previously unrecognized link between GSDME and EGFR stability and offer new insight into cancer pathogenesis.","PeriodicalId":73644,"journal":{"name":"Journal of cellular immunology","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44144853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring the Potential of Probiotics in Boosting the Immune System's Response to Reduce the Severity of Malaria","authors":"Bamgbose Timothy, J. de la Fuente","doi":"10.33696/immunology.5.166","DOIUrl":"https://doi.org/10.33696/immunology.5.166","url":null,"abstract":". Exploring the Potential of Probiotics in Boosting the Immune System's Response to Reduce the Severity of Malaria. J Cell Immunol. 2023;5","PeriodicalId":73644,"journal":{"name":"Journal of cellular immunology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44149643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Is Interstitial Macrophage Mainly Responsible for Lung Injury in SARS-CoV-2 Infection?","authors":"José Guillermo Cabanillas López","doi":"10.33696/immunology.5.165","DOIUrl":"https://doi.org/10.33696/immunology.5.165","url":null,"abstract":"The course of the COVID-19 pandemic has led to high mortality rates worldwide, which justifies the development of various research studies aimed at elucidating the physiopathological mechanisms involved in the development of lung injury associated with this disease. The angiotensin-converting enzyme 2 (ACE2) receptor plays a leading role as the viral anchoring point necessary for viral replication to begin, so a thorough understanding of the regulatory mechanisms of this receptor is vital. Similarly, the distribution of ACE2 will justify the injury caused by SARS-CoV-2. Macrophages play a more significant role in lung injury since they allow the SARS-CoV-2 virus to reach tissues lacking ACE2 receptors and cause significant tissue damage. Therefore, all factors that influence macrophage migration and mobilization will be considered risk factors for the development of severe lung injury in COVID-19.","PeriodicalId":73644,"journal":{"name":"Journal of cellular immunology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47370156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Role of Granulocyte-Colony Stimulating Factor (G-CSF) in Immune Regulation and Neuroprotection","authors":"","doi":"10.33696/immunology.5.156","DOIUrl":"https://doi.org/10.33696/immunology.5.156","url":null,"abstract":"","PeriodicalId":73644,"journal":{"name":"Journal of cellular immunology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45214069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Intracellular Hyaluronan Synthesis Impairs Hematopoiesis in Diabetes that can be Prevented by Heparin","authors":"A. Wang, V. Hascall","doi":"10.33696/immunology.5.155","DOIUrl":"https://doi.org/10.33696/immunology.5.155","url":null,"abstract":"in Abstract Hyperglycemia in diabetes induces impairment of hematopoiesis, an important consequence in bone marrow (BM) that contributes to chronic complications in advanced diabetes. The alterations to blood cells associated with diabetes mellitus (DM) pathologies have been carefully and extensively documented, but the underlying mechanism(s) is still unclear. Our recent publication indicates that aberrant intracellular synthesis of hyaluronan (HA) by hyperglycemic dividing BM progenitors is the central mechanism involved. This study demonstrated that macrophages that divided from progenitor cells in hyperglycemia are pro-inflammatory (Mpi) and that the presence of low concentrations of heparin (~20 nM) prevented the intracellular HA synthesis and promoted a tissue repair (Mtr) phenotype. Here, we briefly describe how our new studies of abnormal intracellular hyaluronan synthesis impairs hematopoiesis in diabetes and its regulation by heparin","PeriodicalId":73644,"journal":{"name":"Journal of cellular immunology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44746691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Importance of Ultrasensitive ELISA in Cancer Research","authors":"","doi":"10.33696/immunology.5.157","DOIUrl":"https://doi.org/10.33696/immunology.5.157","url":null,"abstract":"","PeriodicalId":73644,"journal":{"name":"Journal of cellular immunology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49181056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Towards a Chemo-immunotherapy to Improve Breast Cancer Immunotherapy","authors":"","doi":"10.33696/immunology.5.159","DOIUrl":"https://doi.org/10.33696/immunology.5.159","url":null,"abstract":"","PeriodicalId":73644,"journal":{"name":"Journal of cellular immunology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46266537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The High Fat Diet Impacts the Plasticity between Fresh and Aged Neutrophils.","authors":"Andrea Baragetti, Giuseppe Danilo Norata","doi":"10.33696/immunology.5.182","DOIUrl":"10.33696/immunology.5.182","url":null,"abstract":"<p><p>Metabolic alterations induced by unhealthy lifestyles, including obesity and insulin resistance are often associated with increased innate immune response and chronic inflammation. Cholesterol has been identified as a key metabolite driving the activation of the inflammasome and the \"epigenetic memory\" in long-term living hematopoietic stem cells. In addition to these mechanisms, the physiological aging of short-living neutrophils is a relevant modifier of their immune competency, as while they egress from medullary niches as \"fresh\", fully competent, cells, they turn into \"aged\", disarmed cells, when they extravasate into peripheral tissues to fight against pathogens or they reach the spleen for disposal. We recently observed that cardio-metabolic alterations induced by a lipid enriched unhealthy diet critically accelerate this process. Indeed, the chronic feeding with a high fat diet (HFD) results in the increase of aged neutrophils in the circulation and their accumulation in liver. This profile is associated with a deteriorated insulin response and obesity. The HFD primes aged, but not fresh neutrophils, to infiltrate in the liver and promotes inflammation coupled to altered cell immune architecture in visceral adipose tissue. Preventing the aging of neutrophils via selective ablation of CXCR2, reduces the development of obesity and improves the sensitivity to insulin. In humans, plasma levels of CXCL1, one of the cytokines binding CXCR2 and promoting neutrophil aging, are directly associated with abdominal adiposity and fatty liver independently of other risk factors. Together these findings point to a direct role of aged neutrophils in the development of metabolic disorders.</p>","PeriodicalId":73644,"journal":{"name":"Journal of cellular immunology","volume":"5 5","pages":"168-173"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7615605/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139704195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Grace Hey, Siya Bhutani, Maxwell Woolridge, Aashay Patel, Anna Walls, Brandon Lucke-Wold
{"title":"Immunologic Implications for Stroke Recovery: Unveiling the Role of the Immune System in Pathogenesis, Neurorepair, and Rehabilitation.","authors":"Grace Hey, Siya Bhutani, Maxwell Woolridge, Aashay Patel, Anna Walls, Brandon Lucke-Wold","doi":"10.33696/immunology.5.170","DOIUrl":"10.33696/immunology.5.170","url":null,"abstract":"<p><p>Stroke is a debilitating neurologic condition characterized by an interruption or complete blockage of blood flow to certain areas of the brain. While the primary injury occurs at the time of the initial ischemic event or hemorrhage, secondary injury mechanisms contribute to neuroinflammation, disruption of the blood-brain barrier (BBB), excitotoxicity, and cerebral edema in the days and hours after stroke. Of these secondary mechanisms of injury, significant dysregulation of various immune populations within the body plays a crucial role in exacerbating brain damage after stroke. Pathological activity of glial cells, infiltrating leukocytes, and the adaptive immune system promote neuroinflammation, BBB damage, and neuronal death. Chronic immune activation can additionally encourage the development of neurologic deficits, immunosuppression, and dysregulation of the gut microbiome. As such, immunotherapy has emerged as a promising strategy for the clinical management of stroke in a highly patient-specific manner. These strategies include regulatory T cells (Tregs), cell adhesion molecules, cytokines, and monoclonal antibodies. However, the use of immunotherapy for stroke remains largely in the early stages, highlighting the need for continued research efforts before widespread clinical use.</p>","PeriodicalId":73644,"journal":{"name":"Journal of cellular immunology","volume":"5 3","pages":"65-81"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49685821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}