IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision最新文献

筛选
英文 中文
Multi-Aperture Transformers for 3D (MAT3D) Segmentation of Clinical and Microscopic Images. 多孔径变压器用于临床和显微图像的三维分割。
IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision Pub Date : 2025-02-01 Epub Date: 2025-04-08 DOI: 10.1109/wacv61041.2025.00427
Muhammad Sohaib, Siyavash Shabani, Sahar A Mohammed, Garrett Winkelmaier, Bahram Parvin
{"title":"Multi-Aperture Transformers for 3D (MAT3D) Segmentation of Clinical and Microscopic Images.","authors":"Muhammad Sohaib, Siyavash Shabani, Sahar A Mohammed, Garrett Winkelmaier, Bahram Parvin","doi":"10.1109/wacv61041.2025.00427","DOIUrl":"10.1109/wacv61041.2025.00427","url":null,"abstract":"<p><p>3D segmentation of biological structures is critical in biomedical imaging, offering significant insights into structures and functions. This paper introduces a novel segmentation of biological images that couples Multi-Aperture representation with Transformers for 3D (MAT3D) segmentation. Our method integrates the global context-awareness of Transformer networks with the local feature extraction capabilities of Convolutional Neural Networks (CNNs), providing a comprehensive solution for accurately delineating complex biological structures. First, we evaluated the performance of the proposed technique on two public clinical datasets of ACDC and Synapse multi-organ segmentation, rendering superior Dice scores of 93.34±0.05 and 89.73±0.04, respectively, with fewer parameters compared to the published literature. Next, we assessed the performance of our technique on an organoid dataset comprising four breast cancer subtypes. The proposed method achieved a Dice 95.12±0.02 and a PQ score of 97.01±0.01, respectively. MAT3D also significantly reduces the parameters to 40 million. The code is available on https://github.com/sohaibcs1/MAT3D.</p>","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"2025 ","pages":"4352-4361"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12040328/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144047757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sli2Vol+: Segmenting 3D Medical Images Based on an Object Estimation Guided Correspondence Flow Network. Sli2Vol+:基于目标估计导向的对应流网络分割3D医学图像。
IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision Pub Date : 2025-02-01 Epub Date: 2025-04-08 DOI: 10.1109/wacv61041.2025.00357
Delin An, Pengfei Gu, Milan Sonka, Chaoli Wang, Danny Z Chen
{"title":"Sli2Vol+: Segmenting 3D Medical Images Based on an Object Estimation Guided Correspondence Flow Network.","authors":"Delin An, Pengfei Gu, Milan Sonka, Chaoli Wang, Danny Z Chen","doi":"10.1109/wacv61041.2025.00357","DOIUrl":"10.1109/wacv61041.2025.00357","url":null,"abstract":"<p><p>Deep learning (DL) methods have shown remarkable successes in medical image segmentation, often using large amounts of annotated data for model training. However, acquiring a large number of diverse labeled 3D medical image datasets is highly difficult and expensive. Recently, mask propagation DL methods were developed to reduce the annotation burden on 3D medical images. For example, Sli2Vol [59] proposed a self-supervised framework (SSF) to learn correspondences by matching neighboring slices via slice reconstruction in the training stage; the learned correspondences were then used to propagate a labeled slice to other slices in the test stage. But, these methods are still prone to error accumulation due to the inter-slice propagation of reconstruction errors. Also, they do not handle discontinuities well, which can occur between consecutive slices in 3D images, as they emphasize exploiting object continuity. To address these challenges, in this work, we propose a new SSF, called <b>Sli2Vol+</b>, for segmenting any anatomical structures in 3D medical images using only a single annotated slice per training and testing volume. Specifically, in the training stage, we first propagate an annotated 2D slice of a training volume to the other slices, generating pseudo-labels (PLs). Then, we develop a novel Object Estimation Guided Correspondence Flow Network to learn reliable correspondences between consecutive slices and corresponding PLs in a self-supervised manner. In the test stage, such correspondences are utilized to propagate a single annotated slice to the other slices of a test volume. We demonstrate the effectiveness of our method on various medical image segmentation tasks with different datasets, showing better generalizability across different organs, modalities, and modals. Code is available at https://github.com/adlsn/Sli2VolPlus.</p>","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"2025 ","pages":"3624-3634"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12459605/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145152049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CUNSB-RFIE: Context-aware Unpaired Neural Schrödinger Bridge in Retinal Fundus Image Enhancement. 上下文感知的未配对神经Schrödinger桥在视网膜眼底图像增强中的应用。
IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision Pub Date : 2025-02-01 Epub Date: 2025-04-08 DOI: 10.1109/wacv61041.2025.00442
Xuanzhao Dong, Vamsi Krishna Vasa, Wenhui Zhu, Peijie Qiu, Xiwen Chen, Yi Su, Yujian Xiong, Zhangsihao Yang, Yanxi Chen, Yalin Wang
{"title":"CUNSB-RFIE: Context-aware Unpaired Neural Schrödinger Bridge in Retinal Fundus Image Enhancement.","authors":"Xuanzhao Dong, Vamsi Krishna Vasa, Wenhui Zhu, Peijie Qiu, Xiwen Chen, Yi Su, Yujian Xiong, Zhangsihao Yang, Yanxi Chen, Yalin Wang","doi":"10.1109/wacv61041.2025.00442","DOIUrl":"10.1109/wacv61041.2025.00442","url":null,"abstract":"<p><p>Retinal fundus photography is significant in diagnosing and monitoring retinal diseases. However, systemic imperfections and operator/patient-related factors can hinder the acquisition of high-quality retinal images. Previous efforts in retinal image enhancement primarily relied on GANs, which are limited by the trade-off between training stability and output diversity. In contrast, the Schrödinger Bridge (SB), offers a more stable solution by utilizing Optimal Transport (OT) theory to model a stochastic differential equation (SDE) between two arbitrary distributions. This allows SB to effectively transform low-quality retinal images into their high-quality counterparts. In this work, we leverage the SB framework to propose an image-to-image translation pipeline for retinal image enhancement. Additionally, previous methods often fail to capture fine struc tural details, such as blood vessels. To address this, we enhance our pipeline by introducing Dynamic Snake Convolution, whose tortuous receptive field can better preserve tubular structures. We name the resulting retinal fundus image enhancement framework the Context-aware Unpaired Neural Schrödinger Bridge (CUNSB-RFIE). To the best of our knowledge, this is the first endeavor to use the SB approach for retinal image enhancement. Experimental results on a large-scale dataset demonstrate the advantage of the proposed method compared to several state-of-the-art supervised and unsupervised methods in terms of image quality and performance on downstream tasks.The code is available at https://github.com/Retinal-Research/CUNSB-RFIE.</p>","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"2025 ","pages":"4502-4511"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12408487/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145016765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SODA: Spectral Orthogonal Decomposition Adaptation for Diffusion Models. SODA:光谱正交分解自适应扩散模型。
IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision Pub Date : 2025-02-01 Epub Date: 2025-04-08 DOI: 10.1109/wacv61041.2025.00458
Xinxi Zhang, Song Wen, Ligong Han, Felix Juefei-Xu, Akash Srivastava, Junzhou Huang, Vladimir Pavlovic, Hao Wang, Molei Tao, Dimitris Metaxas
{"title":"SODA: Spectral Orthogonal Decomposition Adaptation for Diffusion Models.","authors":"Xinxi Zhang, Song Wen, Ligong Han, Felix Juefei-Xu, Akash Srivastava, Junzhou Huang, Vladimir Pavlovic, Hao Wang, Molei Tao, Dimitris Metaxas","doi":"10.1109/wacv61041.2025.00458","DOIUrl":"10.1109/wacv61041.2025.00458","url":null,"abstract":"<p><p>Adapting large-scale pre-trained generative models in a parameter-efficient manner is gaining traction. Traditional methods like low rank adaptation achieve parameter efficiency by imposing constraints but may not be optimal for tasks requiring high representation capacity. We propose a novel spectrum-aware adaptation framework for generative models. Our method adjusts both singular values and their basis vectors of pretrained weights. Using the Kronecker product and efficient Stiefel optimizers, we achieve parameter-efficient adaptation of orthogonal matrices. Specifically, we introduce <b>S</b>pectral <b>O</b>rthogonal <b>D</b>ecomposition <b>A</b>daptation (SODA), which balances computational efficiency and representation capacity. Extensive evaluations on text-to-image diffusion models demonstrate SODA's effectiveness, offering a spectrum-aware alternative to existing fine-tuning methods.</p>","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"2025 ","pages":"4665-4682"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12085162/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144095743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Context-Aware Optimal Transport Learning for Retinal Fundus Image Enhancement. 情境感知视网膜眼底图像增强的最优传输学习。
IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision Pub Date : 2025-02-01 Epub Date: 2025-04-08 DOI: 10.1109/wacv61041.2025.00395
Vamsi Krishna Vasa, Yujian Xiong, Peijie Qiu, Oana Dumitrascu, Wenhui Zhu, Yalin Wang
{"title":"Context-Aware Optimal Transport Learning for Retinal Fundus Image Enhancement.","authors":"Vamsi Krishna Vasa, Yujian Xiong, Peijie Qiu, Oana Dumitrascu, Wenhui Zhu, Yalin Wang","doi":"10.1109/wacv61041.2025.00395","DOIUrl":"10.1109/wacv61041.2025.00395","url":null,"abstract":"<p><p>Retinal fundus photography offers a non-invasive way to diagnose and monitor a variety of retinal diseases, but is prone to inherent quality glitches arising from systemic imperfections or operator/patient-related factors. However, high-quality retinal images are crucial for carrying out accurate diagnoses and automated analyses. The fundus image enhancement is typically formulated as a distribution alignment problem, by finding a one-to-one mapping between a low-quality image and its high-quality counterpart. This paper proposes a context-informed optimal transport (OT) learning framework for tackling unpaired fundus image enhancement. In contrast to standard generative image enhancement methods, which struggle with handling contextual information (e.g., over-tampered local structures and unwanted artifacts), the proposed context-aware OT learning paradigm better preserves local structures and minimizes unwanted artifacts. Leveraging deep contextual features, we derive the proposed context-aware OT using the earth mover's distance and show that the proposed context-OT has a solid theoretical guarantee. Experimental results on a large-scale dataset demonstrate the superiority of the proposed method over several state-of-the-art supervised and unsupervised methods in terms of signal-to-noise ratio, structural similarity index, as well as two downstream tasks. The code is available at https://github.com/Retinal-Research/Contextual-OT.</p>","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"2025 ","pages":"4016-4025"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12337797/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144823347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AnyStar: Domain randomized universal star-convex 3D instance segmentation. AnyStar:领域随机通用星凸三维实例分割。
IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision Pub Date : 2024-01-01 Epub Date: 2024-04-09 DOI: 10.1109/wacv57701.2024.00742
Neel Dey, S Mazdak Abulnaga, Benjamin Billot, Esra Abaci Turk, P Ellen Grant, Adrian V Dalca, Polina Golland
{"title":"AnyStar: Domain randomized universal star-convex 3D instance segmentation.","authors":"Neel Dey, S Mazdak Abulnaga, Benjamin Billot, Esra Abaci Turk, P Ellen Grant, Adrian V Dalca, Polina Golland","doi":"10.1109/wacv57701.2024.00742","DOIUrl":"https://doi.org/10.1109/wacv57701.2024.00742","url":null,"abstract":"<p><p>Star-convex shapes arise across bio-microscopy and radiology in the form of nuclei, nodules, metastases, and other units. Existing instance segmentation networks for such structures train on densely labeled instances for each dataset, which requires substantial and often impractical manual annotation effort. Further, significant reengineering or finetuning is needed when presented with new datasets and imaging modalities due to changes in contrast, shape, orientation, resolution, and density. We present AnyStar, a domain-randomized generative model that simulates synthetic training data of blob-like objects with randomized appearance, environments, and imaging physics to train general-purpose star-convex instance segmentation networks. As a result, networks trained using our generative model do not require annotated images from unseen datasets. A single network trained on our synthesized data accurately 3D segments C. elegans and P. dumerilii nuclei in fluorescence microscopy, mouse cortical nuclei in <math><mi>μ</mi> <mi>C</mi> <mi>T</mi></math> , zebrafish brain nuclei in EM, and placental cotyledons in human fetal MRI, all without any retraining, finetuning, transfer learning, or domain adaptation. Code is available at https://github.com/neel-dey/AnyStar.</p>","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"2024 ","pages":"7578-7588"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12381811/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144981155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CSAM: A 2.5D Cross-Slice Attention Module for Anisotropic Volumetric Medical Image Segmentation. CSAM:用于各向异性容积医学图像分割的 2.5D Cross-Slice Attention 模块。
IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision Pub Date : 2024-01-01 Epub Date: 2024-04-09 DOI: 10.1109/wacv57701.2024.00582
Alex Ling Yu Hung, Haoxin Zheng, Kai Zhao, Xiaoxi Du, Kaifeng Pang, Qi Miao, Steven S Raman, Demetri Terzopoulos, Kyunghyun Sung
{"title":"CSAM: A 2.5D Cross-Slice Attention Module for Anisotropic Volumetric Medical Image Segmentation.","authors":"Alex Ling Yu Hung, Haoxin Zheng, Kai Zhao, Xiaoxi Du, Kaifeng Pang, Qi Miao, Steven S Raman, Demetri Terzopoulos, Kyunghyun Sung","doi":"10.1109/wacv57701.2024.00582","DOIUrl":"10.1109/wacv57701.2024.00582","url":null,"abstract":"<p><p>A large portion of volumetric medical data, especially magnetic resonance imaging (MRI) data, is anisotropic, as the through-plane resolution is typically much lower than the in-plane resolution. Both 3D and purely 2D deep learning-based segmentation methods are deficient in dealing with such volumetric data since the performance of 3D methods suffers when confronting anisotropic data, and 2D methods disregard crucial volumetric information. Insufficient work has been done on 2.5D methods, in which 2D convolution is mainly used in concert with volumetric information. These models focus on learning the relationship across slices, but typically have many parameters to train. We offer a Cross-Slice Attention Module (CSAM) with minimal trainable parameters, which captures information across all the slices in the volume by applying semantic, positional, and slice attention on deep feature maps at different scales. Our extensive experiments using different network architectures and tasks demonstrate the usefulness and generalizability of CSAM. Associated code is available at https://github.com/aL3x-O-o-Hung/CSAM.</p>","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"2024 ","pages":"5911-5920"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349312/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PathLDM: Text conditioned Latent Diffusion Model for Histopathology. PathLDM:用于组织病理学的文本条件潜在扩散模型。
IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision Pub Date : 2024-01-01 Epub Date: 2024-04-09 DOI: 10.1109/wacv57701.2024.00510
Srikar Yellapragada, Alexandros Graikos, Prateek Prasanna, Tahsin Kurc, Joel Saltz, Dimitris Samaras
{"title":"PathLDM: Text conditioned Latent Diffusion Model for Histopathology.","authors":"Srikar Yellapragada, Alexandros Graikos, Prateek Prasanna, Tahsin Kurc, Joel Saltz, Dimitris Samaras","doi":"10.1109/wacv57701.2024.00510","DOIUrl":"10.1109/wacv57701.2024.00510","url":null,"abstract":"<p><p>To achieve high-quality results, diffusion models must be trained on large datasets. This can be notably prohibitive for models in specialized domains, such as computational pathology. Conditioning on labeled data is known to help in data-efficient model training. Therefore, histopathology reports, which are rich in valuable clinical information, are an ideal choice as guidance for a histopathology generative model. In this paper, we introduce PathLDM, the first text-conditioned Latent Diffusion Model tailored for generating high-quality histopathology images. Leveraging the rich contextual information provided by pathology text reports, our approach fuses image and textual data to enhance the generation process. By utilizing GPT's capabilities to distill and summarize complex text reports, we establish an effective conditioning mechanism. Through strategic conditioning and necessary architectural enhancements, we achieved a SoTA FID score of 7.64 for text-to-image generation on the TCGA-BRCA dataset, significantly outperforming the closest text-conditioned competitor with FID 30.1.</p>","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"2024 ","pages":"5170-5179"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11131586/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141163007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ordinal Classification with Distance Regularization for Robust Brain Age Prediction. 利用距离正则化的序数分类法进行可靠的脑年龄预测
IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision Pub Date : 2024-01-01 Epub Date: 2024-04-09 DOI: 10.1109/wacv57701.2024.00770
Jay Shah, Md Mahfuzur Rahman Siddiquee, Yi Su, Teresa Wu, Baoxin Li
{"title":"Ordinal Classification with Distance Regularization for Robust Brain Age Prediction.","authors":"Jay Shah, Md Mahfuzur Rahman Siddiquee, Yi Su, Teresa Wu, Baoxin Li","doi":"10.1109/wacv57701.2024.00770","DOIUrl":"10.1109/wacv57701.2024.00770","url":null,"abstract":"<p><p>Age is one of the major known risk factors for Alzheimer's Disease (AD). Detecting AD early is crucial for effective treatment and preventing irreversible brain damage. Brain age, a measure derived from brain imaging reflecting structural changes due to aging, may have the potential to identify AD onset, assess disease risk, and plan targeted interventions. Deep learning-based regression techniques to predict brain age from magnetic resonance imaging (MRI) scans have shown great accuracy recently. However, these methods are subject to an inherent regression to the mean effect, which causes a systematic bias resulting in an overestimation of brain age in young subjects and underestimation in old subjects. This weakens the reliability of predicted brain age as a valid biomarker for downstream clinical applications. Here, we reformulate the brain age prediction task from regression to classification to address the issue of systematic bias. Recognizing the importance of preserving ordinal information from ages to understand aging trajectory and monitor aging longitudinally, we propose a novel ORdinal Distance Encoded Regularization (ORDER) loss that incorporates the order of age labels, enhancing the model's ability to capture age-related patterns. Extensive experiments and ablation studies demonstrate that this framework reduces systematic bias, outperforms state-of-art methods by statistically significant margins, and can better capture subtle differences between clinical groups in an independent AD dataset. Our implementation is publicly available at https://github.com/jaygshah/Robust-Brain-Age-Prediction.</p>","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"2024 ","pages":"7867-7876"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11008505/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140867793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brainomaly: Unsupervised Neurologic Disease Detection Utilizing Unannotated T1-weighted Brain MR Images. 脑异常:利用未标注的 T1 加权脑 MR 图像进行无监督神经系统疾病检测
IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision Pub Date : 2024-01-01 Epub Date: 2024-04-09 DOI: 10.1109/wacv57701.2024.00740
Md Mahfuzur Rahman Siddiquee, Jay Shah, Teresa Wu, Catherine Chong, Todd J Schwedt, Gina Dumkrieger, Simona Nikolova, Baoxin Li
{"title":"Brainomaly: Unsupervised Neurologic Disease Detection Utilizing Unannotated T1-weighted Brain MR Images.","authors":"Md Mahfuzur Rahman Siddiquee, Jay Shah, Teresa Wu, Catherine Chong, Todd J Schwedt, Gina Dumkrieger, Simona Nikolova, Baoxin Li","doi":"10.1109/wacv57701.2024.00740","DOIUrl":"10.1109/wacv57701.2024.00740","url":null,"abstract":"<p><p>Harnessing the power of deep neural networks in the medical imaging domain is challenging due to the difficulties in acquiring large annotated datasets, especially for rare diseases, which involve high costs, time, and effort for annotation. Unsupervised disease detection methods, such as anomaly detection, can significantly reduce human effort in these scenarios. While anomaly detection typically focuses on learning from images of healthy subjects only, real-world situations often present unannotated datasets with a mixture of healthy and diseased subjects. Recent studies have demonstrated that utilizing such unannotated images can improve unsupervised disease and anomaly detection. However, these methods do not utilize knowledge specific to registered neuroimages, resulting in a subpar performance in neurologic disease detection. To address this limitation, we propose Brainomaly, a GAN-based image-to-image translation method specifically designed for neurologic disease detection. Brainomaly not only offers tailored image-to-image translation suitable for neuroimages but also leverages unannotated mixed images to achieve superior neurologic disease detection. Additionally, we address the issue of model selection for inference without annotated samples by proposing a pseudo-AUC metric, further enhancing Brainomaly's detection performance. Extensive experiments and ablation studies demonstrate that Brainomaly outperforms existing state-of-the-art unsupervised disease and anomaly detection methods by significant margins in Alzheimer's disease detection using a publicly available dataset and headache detection using an institutional dataset. The code is available from https://github.com/mahfuzmohammad/Brainomaly.</p>","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"2024 ","pages":"7558-7567"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11078334/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140892793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信