IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision最新文献

筛选
英文 中文
MGM-AE: Self-Supervised Learning on 3D Shape Using Mesh Graph Masked Autoencoders. MGM-AE:使用网格图掩码自编码器的3D形状自监督学习。
IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision Pub Date : 2024-01-01 Epub Date: 2024-04-09 DOI: 10.1109/wacv57701.2024.00327
Zhangsihao Yang, Kaize Ding, Huan Liu, Yalin Wang
{"title":"MGM-AE: Self-Supervised Learning on 3D Shape Using Mesh Graph Masked Autoencoders.","authors":"Zhangsihao Yang, Kaize Ding, Huan Liu, Yalin Wang","doi":"10.1109/wacv57701.2024.00327","DOIUrl":"10.1109/wacv57701.2024.00327","url":null,"abstract":"<p><p>The challenges of applying self-supervised learning to 3D mesh data include difficulties in explicitly modeling and leveraging geometric topology information and designing appropriate pretext tasks and augmentation methods for irregular mesh topology. In this paper, we propose a novel approach for pre-training models on large-scale, unlabeled datasets using graph masking on a mesh graph composed of faces. Our method, Mesh Graph Masked Autoencoders (MGM-AE), utilizes masked autoencoding to pre-train the model and extract important features from the data. Our pre-trained model outperforms prior state-of-the-art mesh encoders in shape classification and segmentation benchmarks, achieving 90.8% accuracy on ModelNet40 and 78.5 mIoU on ShapeNet. The best performance is obtained when the model is trained and evaluated under different masking ratios. Our approach demonstrates effectiveness in pretraining models on large-scale, unlabeled datasets and its potential for improving performance on downstream tasks.</p>","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"2024 ","pages":"3291-3301"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12435090/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145076739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semantic-aware Video Representation for Few-shot Action Recognition. 语义感知视频表示法,用于少镜头动作识别
IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision Pub Date : 2024-01-01 Epub Date: 2024-04-09 DOI: 10.1109/wacv57701.2024.00633
Yutao Tang, Benjamín Béjar, René Vidal
{"title":"Semantic-aware Video Representation for Few-shot Action Recognition.","authors":"Yutao Tang, Benjamín Béjar, René Vidal","doi":"10.1109/wacv57701.2024.00633","DOIUrl":"10.1109/wacv57701.2024.00633","url":null,"abstract":"<p><p>Recent work on action recognition leverages 3D features and textual information to achieve state-of-the-art performance. However, most of the current few-shot action recognition methods still rely on 2D frame-level representations, often require additional components to model temporal relations, and employ complex distance functions to achieve accurate alignment of these representations. In addition, existing methods struggle to effectively integrate textual semantics, some resorting to concatenation or addition of textual and visual features, and some using text merely as an additional supervision without truly achieving feature fusion and information transfer from different modalities. In this work, we propose a simple yet effective <b>S</b>emantic-<b>A</b>ware <b>F</b>ew-<b>S</b>hot <b>A</b>ction <b>R</b>ecognition (<b>SAFSAR</b>) model to address these issues. We show that directly leveraging a 3D feature extractor combined with an effective feature-fusion scheme, and a simple cosine similarity for classification can yield better performance without the need of extra components for temporal modeling or complex distance functions. We introduce an innovative scheme to encode the textual semantics into the video representation which adaptively fuses features from text and video, and encourages the visual encoder to extract more semantically consistent features. In this scheme, SAFSAR achieves alignment and fusion in a compact way. Experiments on five challenging few-shot action recognition benchmarks under various settings demonstrate that the proposed SAFSAR model significantly improves the state-of-the-art performance.</p>","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"2024 ","pages":"6444-6454"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337110/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Domain Generalization with Correlated Style Uncertainty. 具有相关风格不确定性的领域泛化。
IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision Pub Date : 2024-01-01 Epub Date: 2024-04-09 DOI: 10.1109/wacv57701.2024.00200
Zheyuan Zhang, Bin Wang, Debesh Jha, Ugur Demir, Ulas Bagci
{"title":"Domain Generalization with Correlated Style Uncertainty.","authors":"Zheyuan Zhang, Bin Wang, Debesh Jha, Ugur Demir, Ulas Bagci","doi":"10.1109/wacv57701.2024.00200","DOIUrl":"10.1109/wacv57701.2024.00200","url":null,"abstract":"<p><p>Domain generalization (DG) approaches intend to extract domain invariant features that can lead to a more robust deep learning model. In this regard, style augmentation is a strong DG method taking advantage of instance-specific feature statistics containing informative style characteristics to synthetic novel domains. While it is one of the state-of-the-art methods, prior works on style augmentation have either disregarded the interdependence amongst distinct feature channels or have solely constrained style augmentation to linear interpolation. To address these research gaps, in this work, we introduce a novel augmentation approach, named Correlated Style Uncertainty (CSU), surpassing the limitations of linear interpolation in style statistic space and simultaneously preserving vital correlation information. Our method's efficacy is established through extensive experimentation on diverse cross-domain computer vision and medical imaging classification tasks: PACS, Office-Home, and Camelyon17 datasets, and the Duke-Market1501 instance retrieval task. The results showcase a remarkable improvement margin over existing state-of-the-art techniques. The source code is available https://github.com/freshman97/CSU.</p>","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"2024 ","pages":"1989-1998"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230655/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141560398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Augmentation by Counterfactual Explanation - Fixing an Overconfident Classifier. 反事实解释的扩充——修复一个过于自信的分类器。
IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision Pub Date : 2023-01-01 Epub Date: 2023-02-06 DOI: 10.1109/wacv56688.2023.00470
Sumedha Singla, Nihal Murali, Forough Arabshahi, Sofia Triantafyllou, Kayhan Batmanghelich
{"title":"Augmentation by Counterfactual Explanation - Fixing an Overconfident Classifier.","authors":"Sumedha Singla,&nbsp;Nihal Murali,&nbsp;Forough Arabshahi,&nbsp;Sofia Triantafyllou,&nbsp;Kayhan Batmanghelich","doi":"10.1109/wacv56688.2023.00470","DOIUrl":"10.1109/wacv56688.2023.00470","url":null,"abstract":"<p><p>A highly accurate but overconfident model is ill-suited for deployment in critical applications such as healthcare and autonomous driving. The classification outcome should reflect a high uncertainty on ambiguous in-distribution samples that lie close to the decision boundary. The model should also refrain from making overconfident decisions on samples that lie far outside its training distribution, far-out-of-distribution (far-OOD), or on unseen samples from novel classes that lie near its training distribution (near-OOD). This paper proposes an application of counterfactual explanations in fixing an over-confident classifier. Specifically, we propose to fine-tune a given pre-trained classifier using augmentations from a counterfactual explainer (ACE) to fix its uncertainty characteristics while retaining its predictive performance. We perform extensive experiments with detecting far-OOD, near-OOD, and ambiguous samples. Our empirical results show that the revised model have improved uncertainty measures, and its performance is competitive to the state-of-the-art methods.</p>","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"2023 ","pages":"4709-4719"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10506513/pdf/nihms-1915803.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10313085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Anisotropic Multi-Scale Graph Convolutional Network for Dense Shape Correspondence. 稠密形状对应的各向异性多尺度图卷积网络。
Mohammad Farazi, Wenhui Zhu, Zhangsihao Yang, Yalin Wang
{"title":"Anisotropic Multi-Scale Graph Convolutional Network for Dense Shape Correspondence.","authors":"Mohammad Farazi,&nbsp;Wenhui Zhu,&nbsp;Zhangsihao Yang,&nbsp;Yalin Wang","doi":"10.1109/wacv56688.2023.00316","DOIUrl":"https://doi.org/10.1109/wacv56688.2023.00316","url":null,"abstract":"<p><p>This paper studies 3D dense shape correspondence, a key shape analysis application in computer vision and graphics. We introduce a novel hybrid geometric deep learning-based model that learns geometrically meaningful and discretization-independent features. The proposed framework has a U-Net model as the primary node feature extractor, followed by a successive spectral-based graph convolutional network. To create a diverse set of filters, we use anisotropic wavelet basis filters, being sensitive to both different directions and band-passes. This filter set overcomes the common over-smoothing behavior of conventional graph neural networks. To further improve the model's performance, we add a function that perturbs the feature maps in the last layer ahead of fully connected layers, forcing the network to learn more discriminative features overall. The resulting correspondence maps show state-of-the-art performance on the benchmark datasets based on average geodesic errors and superior robustness to discretization in 3D meshes. Our approach provides new insights and practical solutions to the dense shape correspondence research.</p>","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"2023 ","pages":"3145-3154"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448951/pdf/nihms-1845628.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10101390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
VSGD-Net: Virtual Staining Guided Melanocyte Detection on Histopathological Images. VSGD-Net:组织病理图像上的虚拟染色引导黑色素细胞检测
IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision Pub Date : 2023-01-01 Epub Date: 2023-02-06 DOI: 10.1109/wacv56688.2023.00196
Kechun Liu, Beibin Li, Wenjun Wu, Caitlin May, Oliver Chang, Stevan Knezevich, Lisa Reisch, Joann Elmore, Linda Shapiro
{"title":"VSGD-Net: Virtual Staining Guided Melanocyte Detection on Histopathological Images.","authors":"Kechun Liu, Beibin Li, Wenjun Wu, Caitlin May, Oliver Chang, Stevan Knezevich, Lisa Reisch, Joann Elmore, Linda Shapiro","doi":"10.1109/wacv56688.2023.00196","DOIUrl":"10.1109/wacv56688.2023.00196","url":null,"abstract":"<p><p>Detection of melanocytes serves as a critical prerequisite in assessing melanocytic growth patterns when diagnosing melanoma and its precursor lesions on skin biopsy specimens. However, this detection is challenging due to the visual similarity of melanocytes to other cells in routine Hematoxylin and Eosin (H&E) stained images, leading to the failure of current nuclei detection methods. Stains such as Sox10 can mark melanocytes, but they require an additional step and expense and thus are not regularly used in clinical practice. To address these limitations, we introduce VSGD-Net, a novel detection network that learns melanocyte identification through virtual staining from H&E to Sox10. The method takes only routine H&E images during inference, resulting in a promising approach to support pathologists in the diagnosis of melanoma. To the best of our knowledge, this is the first study that investigates the detection problem using image synthesis features between two distinct pathology stainings. Extensive experimental results show that our proposed model outperforms state-of-the-art nuclei detection methods for melanocyte detection. The source code and pre-trained model are available at: https://github.com/kechunl/VSGD-Net.</p>","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"2023 ","pages":"1918-1927"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9977454/pdf/nihms-1876466.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9136262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Attend Who is Weak: Pruning-assisted Medical Image Localization under Sophisticated and Implicit Imbalances. 关注谁是弱者:复杂和隐式失衡下的剪枝辅助医学图像定位。
Ajay Jaiswal, Tianlong Chen, Justin F Rousseau, Yifan Peng, Ying Ding, Zhangyang Wang
{"title":"Attend Who is Weak: Pruning-assisted Medical Image Localization under Sophisticated and Implicit Imbalances.","authors":"Ajay Jaiswal,&nbsp;Tianlong Chen,&nbsp;Justin F Rousseau,&nbsp;Yifan Peng,&nbsp;Ying Ding,&nbsp;Zhangyang Wang","doi":"10.1109/wacv56688.2023.00496","DOIUrl":"https://doi.org/10.1109/wacv56688.2023.00496","url":null,"abstract":"<p><p>Deep neural networks (DNNs) have rapidly become a de facto choice for medical image understanding tasks. However, DNNs are notoriously fragile to the class imbalance in image classification. We further point out that such imbalance fragility can be amplified when it comes to more sophisticated tasks such as pathology localization, as imbalances in such problems can have highly complex and often implicit forms of presence. For example, different pathology can have different sizes or colors (w.r.t.the background), different underlying demographic distributions, and in general different difficulty levels to recognize, even in a meticulously curated balanced distribution of training data. In this paper, we propose to use pruning to automatically and adaptively identify hard-to-learn (HTL) training samples, and improve pathology localization by attending them explicitly, during training in supervised, semi-supervised, and weakly-supervised settings. Our main inspiration is drawn from the recent finding that deep classification models have difficult-to-memorize samples and those may be effectively exposed through network pruning [15] - and we extend such observation beyond classification for the first time. We also present an interesting demographic analysis which illustrates HTLs ability to capture complex demographic imbalances. Our extensive experiments on the Skin Lesion Localization task in multiple training settings by paying additional attention to HTLs show significant improvement of localization performance by ~2-3%.</p>","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"2023 ","pages":"4976-4985"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10089697/pdf/nihms-1888485.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9314753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Knowledge-Augmented Contrastive Learning for Abnormality Classification and Localization in Chest X-rays with Radiomics using a Feedback Loop. 基于反馈环的放射组学在胸片异常分类和定位中的知识增强对比学习。
IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision Pub Date : 2022-01-01 Epub Date: 2022-02-15 DOI: 10.1109/wacv51458.2022.00185
Yan Han, Chongyan Chen, Ahmed Tewfik, Benjamin Glicksberg, Ying Ding, Yifan Peng, Zhangyang Wang
{"title":"Knowledge-Augmented Contrastive Learning for Abnormality Classification and Localization in Chest X-rays with Radiomics using a Feedback Loop.","authors":"Yan Han,&nbsp;Chongyan Chen,&nbsp;Ahmed Tewfik,&nbsp;Benjamin Glicksberg,&nbsp;Ying Ding,&nbsp;Yifan Peng,&nbsp;Zhangyang Wang","doi":"10.1109/wacv51458.2022.00185","DOIUrl":"https://doi.org/10.1109/wacv51458.2022.00185","url":null,"abstract":"<p><p>Accurate classification and localization of abnormalities in chest X-rays play an important role in clinical diagnosis and treatment planning. Building a highly accurate predictive model for these tasks usually requires a large number of manually annotated labels and pixel regions (bounding boxes) of abnormalities. However, it is expensive to acquire such annotations, especially the bounding boxes. Recently, contrastive learning has shown strong promise in leveraging unlabeled natural images to produce highly generalizable and discriminative features. However, extending its power to the medical image domain is under-explored and highly non-trivial, since medical images are much less amendable to data augmentations. In contrast, their prior knowledge, as well as radiomic features, is often crucial. To bridge this gap, we propose an end-to-end semi-supervised knowledge-augmented contrastive learning framework, that simultaneously performs disease classification and localization tasks. The key knob of our framework is a unique positive sampling approach tailored for the medical images, by seamlessly integrating radiomic features as a knowledge augmentation. Specifically, we first apply an image encoder to classify the chest X-rays and to generate the image features. We next leverage Grad-CAM to highlight the crucial (abnormal) regions for chest X-rays (even when unannotated), from which we extract radiomic features. The radiomic features are then passed through another dedicated encoder to act as the positive sample for the image features generated from the same chest X-ray. In this way, our framework constitutes a feedback loop for image and radiomic features to mutually reinforce each other. Their contrasting yields knowledge-augmented representations that are both robust and interpretable. Extensive experiments on the NIH Chest X-ray dataset demonstrate that our approach outperforms existing baselines in both classification and localization tasks.</p>","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":" ","pages":"1789-1798"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9594386/pdf/nihms-1844026.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40438683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Self-Supervised Poisson-Gaussian Denoising. 自监督泊松高斯去噪。
IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision Pub Date : 2021-01-01 Epub Date: 2021-06-14 DOI: 10.1109/wacv48630.2021.00218
Wesley Khademi, Sonia Rao, Clare Minnerath, Guy Hagen, Jonathan Ventura
{"title":"Self-Supervised Poisson-Gaussian Denoising.","authors":"Wesley Khademi, Sonia Rao, Clare Minnerath, Guy Hagen, Jonathan Ventura","doi":"10.1109/wacv48630.2021.00218","DOIUrl":"10.1109/wacv48630.2021.00218","url":null,"abstract":"<p><p>We extend the blindspot model for self-supervised denoising to handle Poisson-Gaussian noise and introduce an improved training scheme that avoids hyperparameters and adapts the denoiser to the test data. Self-supervised models for denoising learn to denoise from only noisy data and do not require corresponding clean images, which are difficult or impossible to acquire in some application areas of interest such as low-light microscopy. We introduce a new training strategy to handle Poisson-Gaussian noise which is the standard noise model for microscope images. Our new strategy eliminates hyperparameters from the loss function, which is important in a self-supervised regime where no ground truth data is available to guide hyperparameter tuning. We show how our denoiser can be adapted to the test data to improve performance. Our evaluations on microscope image denoising benchmarks validate our approach.</p>","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":" ","pages":"2130-2138"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8294668/pdf/nihms-1710528.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39211431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Representation Learning with Statistical Independence to Mitigate Bias. 具有统计独立性的表征学习,以减少偏差。
IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision Pub Date : 2021-01-01 Epub Date: 2021-06-14 DOI: 10.1109/wacv48630.2021.00256
Ehsan Adeli, Qingyu Zhao, Adolf Pfefferbaum, Edith V Sullivan, Li Fei-Fei, Juan Carlos Niebles, Kilian M Pohl
{"title":"Representation Learning with Statistical Independence to Mitigate Bias.","authors":"Ehsan Adeli, Qingyu Zhao, Adolf Pfefferbaum, Edith V Sullivan, Li Fei-Fei, Juan Carlos Niebles, Kilian M Pohl","doi":"10.1109/wacv48630.2021.00256","DOIUrl":"10.1109/wacv48630.2021.00256","url":null,"abstract":"<p><p>Presence of bias (in datasets or tasks) is inarguably one of the most critical challenges in machine learning applications that has alluded to pivotal debates in recent years. Such challenges range from spurious associations between variables in medical studies to the bias of race in gender or face recognition systems. Controlling for all types of biases in the dataset curation stage is cumbersome and sometimes impossible. The alternative is to use the available data and build models incorporating fair representation learning. In this paper, we propose such a model based on adversarial training with two competing objectives to learn features that have (1) maximum discriminative power with respect to the task and (2) minimal statistical mean dependence with the protected (bias) variable(s). Our approach does so by incorporating a new adversarial loss function that encourages a vanished correlation between the bias and the learned features. We apply our method to synthetic data, medical images (containing task bias), and a dataset for gender classification (containing dataset bias). Our results show that the learned features by our method not only result in superior prediction performance but also are unbiased.</p>","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"2021 ","pages":"2512-2522"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8436589/pdf/nihms-1648742.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9649997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信