CUNSB-RFIE: Context-aware Unpaired Neural Schrödinger Bridge in Retinal Fundus Image Enhancement.

Xuanzhao Dong, Vamsi Krishna Vasa, Wenhui Zhu, Peijie Qiu, Xiwen Chen, Yi Su, Yujian Xiong, Zhangsihao Yang, Yanxi Chen, Yalin Wang
{"title":"CUNSB-RFIE: Context-aware Unpaired Neural Schrödinger Bridge in Retinal Fundus Image Enhancement.","authors":"Xuanzhao Dong, Vamsi Krishna Vasa, Wenhui Zhu, Peijie Qiu, Xiwen Chen, Yi Su, Yujian Xiong, Zhangsihao Yang, Yanxi Chen, Yalin Wang","doi":"10.1109/wacv61041.2025.00442","DOIUrl":null,"url":null,"abstract":"<p><p>Retinal fundus photography is significant in diagnosing and monitoring retinal diseases. However, systemic imperfections and operator/patient-related factors can hinder the acquisition of high-quality retinal images. Previous efforts in retinal image enhancement primarily relied on GANs, which are limited by the trade-off between training stability and output diversity. In contrast, the Schrödinger Bridge (SB), offers a more stable solution by utilizing Optimal Transport (OT) theory to model a stochastic differential equation (SDE) between two arbitrary distributions. This allows SB to effectively transform low-quality retinal images into their high-quality counterparts. In this work, we leverage the SB framework to propose an image-to-image translation pipeline for retinal image enhancement. Additionally, previous methods often fail to capture fine struc tural details, such as blood vessels. To address this, we enhance our pipeline by introducing Dynamic Snake Convolution, whose tortuous receptive field can better preserve tubular structures. We name the resulting retinal fundus image enhancement framework the Context-aware Unpaired Neural Schrödinger Bridge (CUNSB-RFIE). To the best of our knowledge, this is the first endeavor to use the SB approach for retinal image enhancement. Experimental results on a large-scale dataset demonstrate the advantage of the proposed method compared to several state-of-the-art supervised and unsupervised methods in terms of image quality and performance on downstream tasks.The code is available at https://github.com/Retinal-Research/CUNSB-RFIE.</p>","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"2025 ","pages":"4502-4511"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12408487/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/wacv61041.2025.00442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Retinal fundus photography is significant in diagnosing and monitoring retinal diseases. However, systemic imperfections and operator/patient-related factors can hinder the acquisition of high-quality retinal images. Previous efforts in retinal image enhancement primarily relied on GANs, which are limited by the trade-off between training stability and output diversity. In contrast, the Schrödinger Bridge (SB), offers a more stable solution by utilizing Optimal Transport (OT) theory to model a stochastic differential equation (SDE) between two arbitrary distributions. This allows SB to effectively transform low-quality retinal images into their high-quality counterparts. In this work, we leverage the SB framework to propose an image-to-image translation pipeline for retinal image enhancement. Additionally, previous methods often fail to capture fine struc tural details, such as blood vessels. To address this, we enhance our pipeline by introducing Dynamic Snake Convolution, whose tortuous receptive field can better preserve tubular structures. We name the resulting retinal fundus image enhancement framework the Context-aware Unpaired Neural Schrödinger Bridge (CUNSB-RFIE). To the best of our knowledge, this is the first endeavor to use the SB approach for retinal image enhancement. Experimental results on a large-scale dataset demonstrate the advantage of the proposed method compared to several state-of-the-art supervised and unsupervised methods in terms of image quality and performance on downstream tasks.The code is available at https://github.com/Retinal-Research/CUNSB-RFIE.

上下文感知的未配对神经Schrödinger桥在视网膜眼底图像增强中的应用。
视网膜眼底摄影对视网膜疾病的诊断和监测具有重要意义。然而,系统缺陷和操作者/患者相关因素会阻碍高质量视网膜图像的获取。以往的视网膜图像增强主要依赖于gan,但受到训练稳定性和输出多样性之间权衡的限制。相比之下,Schrödinger Bridge (SB)通过利用最优传输(OT)理论来模拟两个任意分布之间的随机微分方程(SDE),提供了一个更稳定的解决方案。这使得SB可以有效地将低质量的视网膜图像转换为高质量的图像。在这项工作中,我们利用SB框架提出了一个用于视网膜图像增强的图像到图像转换管道。此外,以前的方法往往不能捕获精细的结构细节,如血管。为了解决这个问题,我们通过引入动态蛇卷积来增强管道,其曲折的接受野可以更好地保存管状结构。我们将由此产生的视网膜眼底图像增强框架命名为上下文感知的未配对神经Schrödinger桥(cunsdb - rfie)。据我们所知,这是第一次尝试使用SB方法来增强视网膜图像。在大规模数据集上的实验结果表明,与几种最先进的有监督和无监督方法相比,所提出的方法在图像质量和下游任务的性能方面具有优势。代码可在https://github.com/Retinal-Research/CUNSB-RFIE上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信