多孔径变压器用于临床和显微图像的三维分割。

Muhammad Sohaib, Siyavash Shabani, Sahar A Mohammed, Garrett Winkelmaier, Bahram Parvin
{"title":"多孔径变压器用于临床和显微图像的三维分割。","authors":"Muhammad Sohaib, Siyavash Shabani, Sahar A Mohammed, Garrett Winkelmaier, Bahram Parvin","doi":"10.1109/wacv61041.2025.00427","DOIUrl":null,"url":null,"abstract":"<p><p>3D segmentation of biological structures is critical in biomedical imaging, offering significant insights into structures and functions. This paper introduces a novel segmentation of biological images that couples Multi-Aperture representation with Transformers for 3D (MAT3D) segmentation. Our method integrates the global context-awareness of Transformer networks with the local feature extraction capabilities of Convolutional Neural Networks (CNNs), providing a comprehensive solution for accurately delineating complex biological structures. First, we evaluated the performance of the proposed technique on two public clinical datasets of ACDC and Synapse multi-organ segmentation, rendering superior Dice scores of 93.34±0.05 and 89.73±0.04, respectively, with fewer parameters compared to the published literature. Next, we assessed the performance of our technique on an organoid dataset comprising four breast cancer subtypes. The proposed method achieved a Dice 95.12±0.02 and a PQ score of 97.01±0.01, respectively. MAT3D also significantly reduces the parameters to 40 million. The code is available on https://github.com/sohaibcs1/MAT3D.</p>","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"2025 ","pages":"4352-4361"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12040328/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-Aperture Transformers for 3D (MAT3D) Segmentation of Clinical and Microscopic Images.\",\"authors\":\"Muhammad Sohaib, Siyavash Shabani, Sahar A Mohammed, Garrett Winkelmaier, Bahram Parvin\",\"doi\":\"10.1109/wacv61041.2025.00427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>3D segmentation of biological structures is critical in biomedical imaging, offering significant insights into structures and functions. This paper introduces a novel segmentation of biological images that couples Multi-Aperture representation with Transformers for 3D (MAT3D) segmentation. Our method integrates the global context-awareness of Transformer networks with the local feature extraction capabilities of Convolutional Neural Networks (CNNs), providing a comprehensive solution for accurately delineating complex biological structures. First, we evaluated the performance of the proposed technique on two public clinical datasets of ACDC and Synapse multi-organ segmentation, rendering superior Dice scores of 93.34±0.05 and 89.73±0.04, respectively, with fewer parameters compared to the published literature. Next, we assessed the performance of our technique on an organoid dataset comprising four breast cancer subtypes. The proposed method achieved a Dice 95.12±0.02 and a PQ score of 97.01±0.01, respectively. MAT3D also significantly reduces the parameters to 40 million. The code is available on https://github.com/sohaibcs1/MAT3D.</p>\",\"PeriodicalId\":73325,\"journal\":{\"name\":\"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision\",\"volume\":\"2025 \",\"pages\":\"4352-4361\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12040328/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/wacv61041.2025.00427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/wacv61041.2025.00427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物结构的三维分割在生物医学成像中至关重要,提供了对结构和功能的重要见解。本文介绍了一种新的生物图像分割方法,该方法将多孔径表示与三维变形金刚(MAT3D)相结合。我们的方法将Transformer网络的全局上下文感知与卷积神经网络(cnn)的局部特征提取能力相结合,为精确描绘复杂生物结构提供了全面的解决方案。首先,我们在ACDC和Synapse多器官分割两个公开的临床数据集上评估了所提出的技术的性能,与已发表的文献相比,Dice得分分别为93.34±0.05和89.73±0.04,参数更少。接下来,我们在包含四种乳腺癌亚型的类器官数据集上评估了我们的技术的性能。该方法的Dice评分为95.12±0.02,PQ评分为97.01±0.01。MAT3D也将参数大幅减少到4000万。代码可在https://github.com/sohaibcs1/MAT3D上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Aperture Transformers for 3D (MAT3D) Segmentation of Clinical and Microscopic Images.

3D segmentation of biological structures is critical in biomedical imaging, offering significant insights into structures and functions. This paper introduces a novel segmentation of biological images that couples Multi-Aperture representation with Transformers for 3D (MAT3D) segmentation. Our method integrates the global context-awareness of Transformer networks with the local feature extraction capabilities of Convolutional Neural Networks (CNNs), providing a comprehensive solution for accurately delineating complex biological structures. First, we evaluated the performance of the proposed technique on two public clinical datasets of ACDC and Synapse multi-organ segmentation, rendering superior Dice scores of 93.34±0.05 and 89.73±0.04, respectively, with fewer parameters compared to the published literature. Next, we assessed the performance of our technique on an organoid dataset comprising four breast cancer subtypes. The proposed method achieved a Dice 95.12±0.02 and a PQ score of 97.01±0.01, respectively. MAT3D also significantly reduces the parameters to 40 million. The code is available on https://github.com/sohaibcs1/MAT3D.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信