Muhammad Sohaib, Siyavash Shabani, Sahar A Mohammed, Garrett Winkelmaier, Bahram Parvin
{"title":"Multi-Aperture Transformers for 3D (MAT3D) Segmentation of Clinical and Microscopic Images.","authors":"Muhammad Sohaib, Siyavash Shabani, Sahar A Mohammed, Garrett Winkelmaier, Bahram Parvin","doi":"10.1109/wacv61041.2025.00427","DOIUrl":null,"url":null,"abstract":"<p><p>3D segmentation of biological structures is critical in biomedical imaging, offering significant insights into structures and functions. This paper introduces a novel segmentation of biological images that couples Multi-Aperture representation with Transformers for 3D (MAT3D) segmentation. Our method integrates the global context-awareness of Transformer networks with the local feature extraction capabilities of Convolutional Neural Networks (CNNs), providing a comprehensive solution for accurately delineating complex biological structures. First, we evaluated the performance of the proposed technique on two public clinical datasets of ACDC and Synapse multi-organ segmentation, rendering superior Dice scores of 93.34±0.05 and 89.73±0.04, respectively, with fewer parameters compared to the published literature. Next, we assessed the performance of our technique on an organoid dataset comprising four breast cancer subtypes. The proposed method achieved a Dice 95.12±0.02 and a PQ score of 97.01±0.01, respectively. MAT3D also significantly reduces the parameters to 40 million. The code is available on https://github.com/sohaibcs1/MAT3D.</p>","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"2025 ","pages":"4352-4361"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12040328/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/wacv61041.2025.00427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
3D segmentation of biological structures is critical in biomedical imaging, offering significant insights into structures and functions. This paper introduces a novel segmentation of biological images that couples Multi-Aperture representation with Transformers for 3D (MAT3D) segmentation. Our method integrates the global context-awareness of Transformer networks with the local feature extraction capabilities of Convolutional Neural Networks (CNNs), providing a comprehensive solution for accurately delineating complex biological structures. First, we evaluated the performance of the proposed technique on two public clinical datasets of ACDC and Synapse multi-organ segmentation, rendering superior Dice scores of 93.34±0.05 and 89.73±0.04, respectively, with fewer parameters compared to the published literature. Next, we assessed the performance of our technique on an organoid dataset comprising four breast cancer subtypes. The proposed method achieved a Dice 95.12±0.02 and a PQ score of 97.01±0.01, respectively. MAT3D also significantly reduces the parameters to 40 million. The code is available on https://github.com/sohaibcs1/MAT3D.