Hasti Rostamikhanghahi;Marcus Ingram;Brian G. Booth;Jan D’Hooge
{"title":"Online Scaphoid Tracking Using a Wearable and Flexible Ultrasound Array: A First Proof of Concept","authors":"Hasti Rostamikhanghahi;Marcus Ingram;Brian G. Booth;Jan D’Hooge","doi":"10.1109/OJUFFC.2025.3566006","DOIUrl":"https://doi.org/10.1109/OJUFFC.2025.3566006","url":null,"abstract":"Percutaneous Scaphoid Fixation is a minimally invasive technique used to treat fractures of the scaphoid, the most fractured bone in the wrist. A significant challenge in this procedure is managing complications due to scaphoid movement due to wrist motion. This study aims to enhance the effectiveness of the intervention by introducing a novel wearable ultrasound array capable of flexible adherence and real-time tracking. By accurately monitoring scaphoid movement throughout the surgery, this innovation seeks to improve the overall success of the treatment. In previous research, a wearable transducer was designed to track the scaphoid during Percutaneous Scaphoid Fixation. In this study, ultrasound data was collected from this transducer and streamed to MATLAB, where an in-house developed algorithm employed template matching methods to track the scaphoid, specifically by identifying image segments that match a predefined template. With this method, we were able to demonstrate online processing at a frame rate of 28 Hz, which aligns with most clinical scanners, indicating the potential of this scaphoid tracking method for deployment on a clinical scanner.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"5 ","pages":"58-61"},"PeriodicalIF":0.0,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10981429","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144073254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hasti Rostamikhanghahi;Marcus Ingram;Brian G. Booth;Jan D’Hooge
{"title":"Evaluation of a Dual Linear Flexible Ultrasound Array for Surgical Interventional Guidance","authors":"Hasti Rostamikhanghahi;Marcus Ingram;Brian G. Booth;Jan D’Hooge","doi":"10.1109/OJUFFC.2025.3560938","DOIUrl":"https://doi.org/10.1109/OJUFFC.2025.3560938","url":null,"abstract":"Scaphoid fractures, the most common of wrist bone fractures, are typically treated using Percutaneous Scaphoid Fixation (PSF). Incorporating ultrasound guidance into this technique could reduce reliance on fluoroscopy, thereby avoiding ionizing radiation and improving procedural accuracy. However, the scaphoid’s position can shift as a result of hand movement during PSF, adding complexity to the procedure. Real-time ultrasound motion tracking of the scaphoid during PSF could simplify the intervention, which would necessitate a flexible transducer array to maintain contact during wrist motion. Our previous research proposed a transducer design with two parallel flexible 1D arrays, enabling simultaneous acquisition of two parallel images. This study focuses on transitioning from theoretical design to practical application by evaluating the performance of the custom array in terms of image quality using phantoms. We assessed image quality using the generalized contrast-to-noise ratio (gCNR) on a cyst phantom and the full width at half maximum (FWHM) on a wire phantom. Results demonstrated gCNR values above 0.67 and FWHM values below 0.70 mm across all sequences. These measurements fall within the acceptable range for the phantoms. Since the primary goal of the array is to track the scaphoid bone during surgery, requiring relatively high image quality, the values observed in this study are suitable for this application.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"5 ","pages":"43-47"},"PeriodicalIF":0.0,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10965791","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143892434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optical Characteristics of an Ultrasound Gel Lens","authors":"Haruto Miki;Fumiko Taniguchi;Kosuke Nakamura;Yuki Harada;Mami Matsukawa;Daisuke Koyama","doi":"10.1109/OJUFFC.2025.3561101","DOIUrl":"https://doi.org/10.1109/OJUFFC.2025.3561101","url":null,"abstract":"Conventional camera modules are characterized by a substantial size, thickness, and weight. This is a consequence of the need for multiple lens elements to achieve the required level of image quality. However, as portable electronic devices continue to undergo miniaturization, there is a growing demand for smaller and thinner camera modules. In this paper, the optical characteristics of an ultrasound gel lens were evaluated quantitatively by expanding the wavefront of the transmitted light in terms of the Zernike polynomial. It was possible to control the focal length of the lens by changing its surface profile through the acoustic radiation force generated by ultrasonic vibration. The effects of ultrasound excitation on spherical aberration, coma aberrations, and astigmatisms were investigated. It was observed that spherical and coma aberrations increased with voltage amplitude, while astigmatism exhibited a reduction in magnitude.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"5 ","pages":"48-52"},"PeriodicalIF":0.0,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10965713","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143892532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ambuj K. Gautam;Ching-Chung Yin;Bishakh Bhattacharya
{"title":"Defect Orientation Evaluation in Structural Plates Using Reflective Correlation Indexing","authors":"Ambuj K. Gautam;Ching-Chung Yin;Bishakh Bhattacharya","doi":"10.1109/OJUFFC.2025.3556974","DOIUrl":"https://doi.org/10.1109/OJUFFC.2025.3556974","url":null,"abstract":"The fundamental shear horizontal (SH0) modes exhibit conversion behaviors to higher mode (SH1) influenced by the symmetric and anti-symmetric defects within a plate. Specifically, reflected SH0 modes remain unaffected by symmetrically oriented defects while transitioning to SH1 mode in the presence of anti-symmetrically oriented defects. This prompts inquiry into the effects when defects lie between symmetric and anti-symmetric positions within the plate thickness. In order to quantify the impact of mode conversion resulting from diverse defect orientations, a thorough analysis has been conducted, and a methodology has been proposed to assess the defect’s position using mode conversion of shear horizontal (SH) guided waves. Particularly, as defects move from symmetric to anti-symmetric positions, the energy of the reflected wave is notably influenced by the defect’s orientation. This indicates that defects located close to symmetric orientations yield minimal reflected energy in the converted SH1 mode, whereas those approaching anti-symmetric orientations exhibit significant reflected energy in the converted SH1 mode. To precisely identify the defect’s position, an assessment of the Reflective Correlation Indexing (RCI) of the converted mode has been conducted. Numerical simulations have been performed to investigate these phenomena and validated with an experimental result using chevron EMAT.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"5 ","pages":"38-42"},"PeriodicalIF":0.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10947017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143830541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Geng-Shi Jeng;Sheng Chen;Le-Tung Hsieh;Men-Tzung Lo
{"title":"Contactless Respiratory Waveform Estimation Using Ultrasound Planar Array","authors":"Geng-Shi Jeng;Sheng Chen;Le-Tung Hsieh;Men-Tzung Lo","doi":"10.1109/OJUFFC.2025.3552048","DOIUrl":"https://doi.org/10.1109/OJUFFC.2025.3552048","url":null,"abstract":"Accurate and contactless respiratory monitoring is essential for both clinical diagnostics and home healthcare, offering the potential for continuous, non-invasive observation. Ultrasound-based systems, particularly when integrated into home smart devices, provide a cost-effective solution. However, existing approaches are limited by poor directivity, inadequate clothing penetration, reliance on averaged respiratory rates without waveform details, and the inability to measure range due to continuous-wave Doppler techniques. To address these challenges, this study develops a novel 18-kHz, 16-channel two-dimensional (2-D) ultrasound array system employing adaptive beamforming to enhance sensitivity and accuracy in respiratory waveform detection. The system integrates pulsed and frequency-modulated continuous-wave (FMCW) excitation to improve the signal-to-noise ratio (SNR) by 20 dB, while the 2-D beamforming technique directly estimates delays from respiratory movements, boosting SNR by an additional 8.5 dB and eliminating the need for time-intensive volumetric scanning. Experimental results demonstrate sub-millimeter displacement accuracy in motor-controlled plate tests, surpassing wearable inertial measurement devices, and human trials reveal an average respiratory rate error of 0.13 breaths per minute across various clothing types and distances. The proposed system not only advances remote respiratory monitoring but also paves the way for enhanced health diagnostics in both clinical and home settings.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"5 ","pages":"23-32"},"PeriodicalIF":0.0,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10929036","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143706647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inverse Problems With Multiple Plane Waves: The Angular Simplification","authors":"Baptiste Heriard-Dubreuil;Adrien Besson;Claude Cohen-Bacrie;Jean-Philippe Thiran","doi":"10.1109/OJUFFC.2025.3551318","DOIUrl":"https://doi.org/10.1109/OJUFFC.2025.3551318","url":null,"abstract":"In unfocused ultrasound imaging, a delay-and-sum algorithm is commonly used to reconstruct one image per emission. When multiple emissions are performed, individual images can be combined by coherent compounding to improve image quality. Alternative methods based on tomographic inverse problems have been recently introduced and prove a superior image quality. However, the high dimensionality of the operators involved in such tomographic problems –especially in the case of multiple emissions– leads to prohibitive computation times and memory requirements, preventing their use in practice. We propose to use an angular framework in which plane waves are considered both in emission and reception. In this new framework, we show that the delay-an-sum and the compounding operators are commutative. Using this property, we formulate a low-dimensional tomographic inverse problem and describe a matrix-free method able to reconstruct high-quality images with a computation time independent of the number of emissions.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"5 ","pages":"33-37"},"PeriodicalIF":0.0,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10926886","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143716544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chaoran Han;Sven Peter Näsholm;Andreas Austeng;Håvard Kjellmo Arnestad
{"title":"Taylor-Series-Based Derivation of the Resolution of Null Subtraction Imaging for a Uniform Linear Array","authors":"Chaoran Han;Sven Peter Näsholm;Andreas Austeng;Håvard Kjellmo Arnestad","doi":"10.1109/OJUFFC.2025.3550096","DOIUrl":"https://doi.org/10.1109/OJUFFC.2025.3550096","url":null,"abstract":"Null subtraction imaging (NSI) is a non-linear beamformer that aims to improve the spatial resolution of ultrasound images. NSI incoherently combines three delay-and-sum (DAS) outputs from the same RF data using three related apodizations on receive. NSI has been advocated to have many advantages in different domains such as B-mode imaging, plane wave imaging, power Doppler imaging, and for large-pitch arrays. However, despite its increasing popularity, an explicit relationship between NSI resolution (interpreted as the mainlobe width) and various parameters (such as the DC offset value c, array aperture, and wavelength) is not known, making system design and intuitive reasoning about the method difficult. Therefore, in the current work, we derive the theoretical NSI array pattern and give an approximate expression for the −6dB mainlobe width. Our derivation is based on a Taylor series-expansion of the analytical NSI array pattern, which is valid over the mainlobe region for the range of c values typically seen in the literature. The results show that the NSI mainlobe width is proportional to <inline-formula> <tex-math>$c lambda /D$ </tex-math></inline-formula>, which is the DC offset value multiplied by the wavelength and divided by the aperture size, and therefore has a similar wavelengh and aperture dependency as the classical DAS mainlobe. The work is validated numerically, also showing that the NSI mainlobe width approaches the DAS mainlobe width as c approaches infinity.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"5 ","pages":"19-22"},"PeriodicalIF":0.0,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10918915","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tina Gabriel;Omid Chaghaneh;Julian Kober;Tönnis Trittler;Edgar M. G. Dorausch;Cornelius Kühnöl;Jakob Schäfer;Richard Nauber;Paul-Henry Koop;Carolin Schneider;Jochen Hampe;Gerhard Fettweis;Moritz Herzog
{"title":"Enhancing Liver Steatosis Classification: H-Scan Analysis of Handheld Ultrasound Data","authors":"Tina Gabriel;Omid Chaghaneh;Julian Kober;Tönnis Trittler;Edgar M. G. Dorausch;Cornelius Kühnöl;Jakob Schäfer;Richard Nauber;Paul-Henry Koop;Carolin Schneider;Jochen Hampe;Gerhard Fettweis;Moritz Herzog","doi":"10.1109/OJUFFC.2025.3566928","DOIUrl":"https://doi.org/10.1109/OJUFFC.2025.3566928","url":null,"abstract":"Handheld ultrasound (H-US) offers a widely accessible and cost-effective option for future medicine. Quantitative US methods, such as H-Scan, could broaden its impact by leveraging the enormous potential of radiofrequency (RF) ultrasound data. H-US derived steatosis and fibrosis assessments would reduce the need for expensive FibroScan® devices, especially supporting low-resource areas. By filtering for lower (GH2) and higher (GH8) frequencies, the method allows for differentiation of scatter sizes related to varying degrees of steatosis, which is crucial for early detection of metabolic-associated steatotic liver disease (MASLD). Considering a substantial and various patient cohort of 468 patients, reducing potential selection bias inherent in smaller study cohorts, this study aims to investigate whether H-Scan analysis of RF-data captured with inexpensive H-US yields comparable results to those seen in previous studies. A strong correlation (r=0.852, p<0.0001)> <tex-math>$alpha $ </tex-math></inline-formula>. No significant correlation was observed between H-Scan and the degree of liver fibrosis, suggesting that the current H-Scan alone might not be suitable for this application. Further research is needed to test and refine the methodology, especially regarding individual attenuation correction.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"5 ","pages":"62-66"},"PeriodicalIF":0.0,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10985905","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144072927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Square-Wave Driven Ultrasonic Liquid Crystal Optical Lenses","authors":"Ryoya Mizuno;Yuma Kuroda;Akira Emoto;Mami Matsukawa;Daisuke Koyama","doi":"10.1109/OJUFFC.2025.3566354","DOIUrl":"https://doi.org/10.1109/OJUFFC.2025.3566354","url":null,"abstract":"Conventional optical lenses only have one focal point. Whereas compound lens systems with multiple lenses and mechanical actuators are used in modules to focus on near and far objects. Camera modules with these systems tend to be bulky and have a slow time response. Electrically-controllable varifocal lenses will accelerate the development of compact photographic devices with high-speed responses. Here, we discuss an ultrasound varifocal liquid crystal (LC) lens that consists of an LC layer between two glass discs and an ultrasound transducer. The orientation of nematic LC molecules could be controlled by acoustic radiation forces, and the lens could change the refractive index distribution and its focal length by ultrasound vibration by utilizing the high LC liquidity and optical anisotropy. The effects of input waveforms on the optical characteristics of the ultrasonic LC lens were investigated in an industrial setting. We applied sinusoidal and square waves at the resonant frequency of the lenses to assess the impact on the optical characteristics. Those characteristics were largely similar. However, slight differences were observed in the vibrational distributions on the lens substrate, indicating that the lens could be controlled by a square-wave drive.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"5 ","pages":"53-57"},"PeriodicalIF":0.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10981748","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143943912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced Row–Column-Addressed Array Imaging With Retrospective Filtering","authors":"Chung-Shiang Mei;Wei-Hsiang Shen;Meng-Lin Li","doi":"10.1109/OJUFFC.2025.3545600","DOIUrl":"https://doi.org/10.1109/OJUFFC.2025.3545600","url":null,"abstract":"To address the inherent complexity associated with fabricating fully-sampled (FS) 2-D arrays, row-column-addressed (RCA) arrays offer a promising alternative by significantly reducing the number of active elements. However, RCA arrays are limited by reduced image quality, as they only allow one-way focusing along both the x- and y-axes. This study introduces a post-filtering scheme that leverages a retrospective filtering method combined with filter-derived coherence-index (FCI) weighting to enhance RCA focusing quality, aiming to emulate the performance of FS arrays. Preliminary simulations were conducted to assess the efficacy of this approach, including point spread function (PSF) analysis and anechoic vessel phantom imaging. In the PSF analysis, our method achieved a 14.63-dB reduction in the sidelobe level, with improvements of 11.3% and 14.29% observed in the -6 dB and -20 dB full-width at half-maximum (FWHM), respectively. For anechoic vessel phantom imaging, the proposed scheme demonstrated substantial gains, with a 15.77 dB enhancement in contrast ratio (CR), a 1.615 increase in contrast-to-noise ratio (CNR), and a 27.03% improvement in generalized contrast-to-noise ratio (gCNR).","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"5 ","pages":"15-18"},"PeriodicalIF":0.0,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10902463","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143553309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}