IEEE open journal of ultrasonics, ferroelectrics, and frequency control最新文献

筛选
英文 中文
Contactless Respiratory Waveform Estimation Using Ultrasound Planar Array
IEEE open journal of ultrasonics, ferroelectrics, and frequency control Pub Date : 2025-03-17 DOI: 10.1109/OJUFFC.2025.3552048
Geng-Shi Jeng;Sheng Chen;Le-Tung Hsieh;Men-Tzung Lo
{"title":"Contactless Respiratory Waveform Estimation Using Ultrasound Planar Array","authors":"Geng-Shi Jeng;Sheng Chen;Le-Tung Hsieh;Men-Tzung Lo","doi":"10.1109/OJUFFC.2025.3552048","DOIUrl":"https://doi.org/10.1109/OJUFFC.2025.3552048","url":null,"abstract":"Accurate and contactless respiratory monitoring is essential for both clinical diagnostics and home healthcare, offering the potential for continuous, non-invasive observation. Ultrasound-based systems, particularly when integrated into home smart devices, provide a cost-effective solution. However, existing approaches are limited by poor directivity, inadequate clothing penetration, reliance on averaged respiratory rates without waveform details, and the inability to measure range due to continuous-wave Doppler techniques. To address these challenges, this study develops a novel 18-kHz, 16-channel two-dimensional (2-D) ultrasound array system employing adaptive beamforming to enhance sensitivity and accuracy in respiratory waveform detection. The system integrates pulsed and frequency-modulated continuous-wave (FMCW) excitation to improve the signal-to-noise ratio (SNR) by 20 dB, while the 2-D beamforming technique directly estimates delays from respiratory movements, boosting SNR by an additional 8.5 dB and eliminating the need for time-intensive volumetric scanning. Experimental results demonstrate sub-millimeter displacement accuracy in motor-controlled plate tests, surpassing wearable inertial measurement devices, and human trials reveal an average respiratory rate error of 0.13 breaths per minute across various clothing types and distances. The proposed system not only advances remote respiratory monitoring but also paves the way for enhanced health diagnostics in both clinical and home settings.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"5 ","pages":"23-32"},"PeriodicalIF":0.0,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10929036","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143706647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inverse Problems With Multiple Plane Waves: The Angular Simplification
IEEE open journal of ultrasonics, ferroelectrics, and frequency control Pub Date : 2025-03-14 DOI: 10.1109/OJUFFC.2025.3551318
Baptiste Heriard-Dubreuil;Adrien Besson;Claude Cohen-Bacrie;Jean-Philippe Thiran
{"title":"Inverse Problems With Multiple Plane Waves: The Angular Simplification","authors":"Baptiste Heriard-Dubreuil;Adrien Besson;Claude Cohen-Bacrie;Jean-Philippe Thiran","doi":"10.1109/OJUFFC.2025.3551318","DOIUrl":"https://doi.org/10.1109/OJUFFC.2025.3551318","url":null,"abstract":"In unfocused ultrasound imaging, a delay-and-sum algorithm is commonly used to reconstruct one image per emission. When multiple emissions are performed, individual images can be combined by coherent compounding to improve image quality. Alternative methods based on tomographic inverse problems have been recently introduced and prove a superior image quality. However, the high dimensionality of the operators involved in such tomographic problems –especially in the case of multiple emissions– leads to prohibitive computation times and memory requirements, preventing their use in practice. We propose to use an angular framework in which plane waves are considered both in emission and reception. In this new framework, we show that the delay-an-sum and the compounding operators are commutative. Using this property, we formulate a low-dimensional tomographic inverse problem and describe a matrix-free method able to reconstruct high-quality images with a computation time independent of the number of emissions.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"5 ","pages":"33-37"},"PeriodicalIF":0.0,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10926886","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143716544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Taylor-Series-Based Derivation of the Resolution of Null Subtraction Imaging for a Uniform Linear Array
IEEE open journal of ultrasonics, ferroelectrics, and frequency control Pub Date : 2025-03-10 DOI: 10.1109/OJUFFC.2025.3550096
Chaoran Han;Sven Peter Näsholm;Andreas Austeng;Håvard Kjellmo Arnestad
{"title":"Taylor-Series-Based Derivation of the Resolution of Null Subtraction Imaging for a Uniform Linear Array","authors":"Chaoran Han;Sven Peter Näsholm;Andreas Austeng;Håvard Kjellmo Arnestad","doi":"10.1109/OJUFFC.2025.3550096","DOIUrl":"https://doi.org/10.1109/OJUFFC.2025.3550096","url":null,"abstract":"Null subtraction imaging (NSI) is a non-linear beamformer that aims to improve the spatial resolution of ultrasound images. NSI incoherently combines three delay-and-sum (DAS) outputs from the same RF data using three related apodizations on receive. NSI has been advocated to have many advantages in different domains such as B-mode imaging, plane wave imaging, power Doppler imaging, and for large-pitch arrays. However, despite its increasing popularity, an explicit relationship between NSI resolution (interpreted as the mainlobe width) and various parameters (such as the DC offset value c, array aperture, and wavelength) is not known, making system design and intuitive reasoning about the method difficult. Therefore, in the current work, we derive the theoretical NSI array pattern and give an approximate expression for the −6dB mainlobe width. Our derivation is based on a Taylor series-expansion of the analytical NSI array pattern, which is valid over the mainlobe region for the range of c values typically seen in the literature. The results show that the NSI mainlobe width is proportional to <inline-formula> <tex-math>$c lambda /D$ </tex-math></inline-formula>, which is the DC offset value multiplied by the wavelength and divided by the aperture size, and therefore has a similar wavelengh and aperture dependency as the classical DAS mainlobe. The work is validated numerically, also showing that the NSI mainlobe width approaches the DAS mainlobe width as c approaches infinity.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"5 ","pages":"19-22"},"PeriodicalIF":0.0,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10918915","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Row–Column-Addressed Array Imaging With Retrospective Filtering
IEEE open journal of ultrasonics, ferroelectrics, and frequency control Pub Date : 2025-02-25 DOI: 10.1109/OJUFFC.2025.3545600
Chung-Shiang Mei;Wei-Hsiang Shen;Meng-Lin Li
{"title":"Enhanced Row–Column-Addressed Array Imaging With Retrospective Filtering","authors":"Chung-Shiang Mei;Wei-Hsiang Shen;Meng-Lin Li","doi":"10.1109/OJUFFC.2025.3545600","DOIUrl":"https://doi.org/10.1109/OJUFFC.2025.3545600","url":null,"abstract":"To address the inherent complexity associated with fabricating fully-sampled (FS) 2-D arrays, row-column-addressed (RCA) arrays offer a promising alternative by significantly reducing the number of active elements. However, RCA arrays are limited by reduced image quality, as they only allow one-way focusing along both the x- and y-axes. This study introduces a post-filtering scheme that leverages a retrospective filtering method combined with filter-derived coherence-index (FCI) weighting to enhance RCA focusing quality, aiming to emulate the performance of FS arrays. Preliminary simulations were conducted to assess the efficacy of this approach, including point spread function (PSF) analysis and anechoic vessel phantom imaging. In the PSF analysis, our method achieved a 14.63-dB reduction in the sidelobe level, with improvements of 11.3% and 14.29% observed in the -6 dB and -20 dB full-width at half-maximum (FWHM), respectively. For anechoic vessel phantom imaging, the proposed scheme demonstrated substantial gains, with a 15.77 dB enhancement in contrast ratio (CR), a 1.615 increase in contrast-to-noise ratio (CNR), and a 27.03% improvement in generalized contrast-to-noise ratio (gCNR).","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"5 ","pages":"15-18"},"PeriodicalIF":0.0,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10902463","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143553309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple-Node Time Transfer Over Star Fiber Network Without Requiring Link Calibration
IEEE open journal of ultrasonics, ferroelectrics, and frequency control Pub Date : 2025-02-11 DOI: 10.1109/OJUFFC.2025.3541156
Kunfeng Xie;Liang Hu;Jianping Chen;Guiling Wu
{"title":"Multiple-Node Time Transfer Over Star Fiber Network Without Requiring Link Calibration","authors":"Kunfeng Xie;Liang Hu;Jianping Chen;Guiling Wu","doi":"10.1109/OJUFFC.2025.3541156","DOIUrl":"https://doi.org/10.1109/OJUFFC.2025.3541156","url":null,"abstract":"In this letter, we proposed a point-to-multipoint fiber-optic time transfer scheme over a star-shaped fiber network based on bidirectional frequency division multiplexing without requiring link calibration. The time signals at the local station and remote stations are encoded into time-varying signals within in different spectral passbands, respectively. The optical carriers with the same wavelength are employed to transfer the two time-varying signals in both directions over a single fiber. The backscattering noises from fiber links can be effectively suppressed by simply electrical filtering due to the non-overlapping on spectrum between the forward and backward time-varying signals. The local station broadcasts the time signal of the reference clock to all remote stations based on space division multiplexing to support point-to-multipoint fiber-optic time transfer. The proposed scheme is demonstrated over a star-shaped fiber network with two remote stations. The results show that the measured mean clock difference can be less than -1.03 ps and 4.99 ps without link calibration, respectively. The measured time stability in terms of time deviation is better than 19.93 ps@1s, 0.50 ps@1000s and 25.35 ps@1s, 0.65 ps@1000s.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"5 ","pages":"11-14"},"PeriodicalIF":0.0,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10879779","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143489203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D High-Frame-Rate Imaging of Natural Shear Waves in the Parasternal View of the Heart
IEEE open journal of ultrasonics, ferroelectrics, and frequency control Pub Date : 2025-02-04 DOI: 10.1109/OJUFFC.2025.3538819
Annette Caenen;Konstantina Papangelopoulou;Laurine Wouters;Ekaterina Seliverstova;Jens-Uwe Voigt;Jan D’Hooge
{"title":"3D High-Frame-Rate Imaging of Natural Shear Waves in the Parasternal View of the Heart","authors":"Annette Caenen;Konstantina Papangelopoulou;Laurine Wouters;Ekaterina Seliverstova;Jens-Uwe Voigt;Jan D’Hooge","doi":"10.1109/OJUFFC.2025.3538819","DOIUrl":"https://doi.org/10.1109/OJUFFC.2025.3538819","url":null,"abstract":"Most clinical studies use a 2D parasternal long-axis view to measure natural shear waves after valve closure for myocardial stiffness assessment. However, its 3D wave propagation direction and its alignment with the 2D imaging plane are not well understood. Previous 3D research has mainly focused on wave propagation from an apical view, primarily tracking the longitudinal component of wave motion instead of the transverse component observed in the parasternal view. Therefore, this work aims to bridge this gap by using 3D high-frame-rate imaging in the parasternal view in 6 healthy volunteers (~750 volumes/s), and compared its results to 2D measurements (~1000 frames/s). We found a more complex wave propagation pattern after mitral valve closure encompassing two wave excitation sources, whereas the wave propagation after aortic valve closure clearly originated near the left ventricular outflow tract. The extent of the wave excitation region varied across volunteers. For the septal wall – tracked in 2D shear wave imaging, the overall wave propagation was from base to apex, which is theoretically in line with the 2D imaging plane orientation. However, wave speed estimations were lower for 3D measurements than for 2D (-0.7 m/s for mitral valve and -0.5 m/s for AVC, on average), potentially due to misalignment of the 2D imaging plane with the longitudinal direction of the heart.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"5 ","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10870294","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143403799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
k²₃₃Estimation of Thin Films via Piezoelectric Stiffening Using Ultrasonic Reflectometry
IEEE open journal of ultrasonics, ferroelectrics, and frequency control Pub Date : 2025-02-03 DOI: 10.1109/OJUFFC.2025.3537962
Yohkoh Shimano;Motoshi Suzuki;Takahiko Yanagitani
{"title":"k²₃₃Estimation of Thin Films via Piezoelectric Stiffening Using Ultrasonic Reflectometry","authors":"Yohkoh Shimano;Motoshi Suzuki;Takahiko Yanagitani","doi":"10.1109/OJUFFC.2025.3537962","DOIUrl":"https://doi.org/10.1109/OJUFFC.2025.3537962","url":null,"abstract":"A method for estimating intrinsic electromechanical coupling coefficient <inline-formula> <tex-math>${k}_{{33}}^{{2}}$ </tex-math></inline-formula> of piezoelectric thin films using piezoelectrically stiffened acoustic velocity <inline-formula> <tex-math>${V}^{text {D}}$ </tex-math></inline-formula> and unstiffened acoustic velocity <inline-formula> <tex-math>${V}^{text {E}}$ </tex-math></inline-formula> was proposed. <inline-formula> <tex-math>${V}^{text {D}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>${V}^{text {E}}$ </tex-math></inline-formula> velocities of thin films in the sub-GHz range were estimated by ultrasonic reflectometry. Directly depositing a film specimen on the backside of the ultrasonic delay line eliminates the need for a coupler layer and avoids acoustic attenuation in the layer. The <inline-formula> <tex-math>${V}^{text {D}}$ </tex-math></inline-formula> velocity can be estimated from the phase differences of the echoes: before and after the film specimen is deposited. In contrast, <inline-formula> <tex-math>${V}^{text {E}}$ </tex-math></inline-formula> velocity can be estimated from the phase difference when the film specimen is under the open circuit and the short circuit. The intrinsic <inline-formula> <tex-math>${k}_{{33}}^{{2}}{}$ </tex-math></inline-formula> can be obtained from the relationship of <inline-formula> <tex-math>${k}_{{33}}^{{2}}~text {=}$ </tex-math></inline-formula> 1 – (<inline-formula> <tex-math>${V}^{text {E}}$ </tex-math></inline-formula>/<inline-formula> <tex-math>${V}^{text {D}})^{{2}}$ </tex-math></inline-formula>. For the Sc0.4Al0.6N thin film specimen, <inline-formula> <tex-math>${k}_{{33}}^{{2}}$ </tex-math></inline-formula> was determined to be 11.6% from <inline-formula> <tex-math>${V}^{text {D}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>${V}^{text {E}}$ </tex-math></inline-formula> of 8400 m/s and 7900 m/s, respectively. For the ZnO thin film specimen, <inline-formula> <tex-math>${k}_{{33}}^{{2}}$ </tex-math></inline-formula> was estimated to be 4.7% from <inline-formula> <tex-math>${V}^{text {D}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>${V}^{text {E}}$ </tex-math></inline-formula> of 6250 m/s and 6100 m/s, respectively. These values are in good agreement with previously reported results.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"5 ","pages":"6-10"},"PeriodicalIF":0.0,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10869444","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143446233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2024 Index IEEE Open Journal of Ultrasonics, Ferroelectrics, and Frequency Control Vol. 4
IEEE open journal of ultrasonics, ferroelectrics, and frequency control Pub Date : 2025-01-31 DOI: 10.1109/OJUFFC.2025.3537476
{"title":"2024 Index IEEE Open Journal of Ultrasonics, Ferroelectrics, and Frequency Control Vol. 4","authors":"","doi":"10.1109/OJUFFC.2025.3537476","DOIUrl":"https://doi.org/10.1109/OJUFFC.2025.3537476","url":null,"abstract":"","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"4 ","pages":"247-254"},"PeriodicalIF":0.0,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10864476","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143106221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accelerator Architecture for Plane-Wave Ultrasound Image Reconstruction in Fourier Domain
IEEE open journal of ultrasonics, ferroelectrics, and frequency control Pub Date : 2025-01-15 DOI: 10.1109/OJUFFC.2025.3530395
Pooriya Navaeilavasani;Daler Rakhmatov
{"title":"Accelerator Architecture for Plane-Wave Ultrasound Image Reconstruction in Fourier Domain","authors":"Pooriya Navaeilavasani;Daler Rakhmatov","doi":"10.1109/OJUFFC.2025.3530395","DOIUrl":"https://doi.org/10.1109/OJUFFC.2025.3530395","url":null,"abstract":"Ultrafast ultrasound imaging based on coherent plane-wave compounding (CPWC) enables very high data acquisition rates in the order of thousands of frames per second. This capability allows the user to capture and characterize fast-changing dynamics of blood flow or tissue motion, thus facilitating advanced biomedical diagnostics. Fast data acquisition should be supported by high image reconstruction rates, which translates into significant computational demands. To address this issue, several state-of-the-art hardware accelerators for CPWC image reconstruction, or beamforming, have been reported in the literature. They primarily target time-domain methods based on delay-and-sum (DAS) beamforming. For the first time, this article proposes a novel hardware architecture for accelerating Fourier-domain image reconstruction, based on an efficient migration technique from geophysics. Our FPGA implementation of one specific architectural instance achieves the reconstruction throughput of 1,380 frames per second (without compounding), where each complex-valued “analytic” image frame consists of <inline-formula> <tex-math>$2048times 128~64$ </tex-math></inline-formula>-bit data samples. The presented work also aims to motivate further research into hardware support for Fourier-domain migration. This technique is asymptotically faster than conventional DAS beamforming; however, its efficient hardware realization is challenging, partly due to its relatively large memory footprint.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"4 ","pages":"231-246"},"PeriodicalIF":0.0,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10843301","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143106240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE OPEN JOURNAL OF ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL Ieee超音波学、铁电学与频率控制开放期刊
IEEE open journal of ultrasonics, ferroelectrics, and frequency control Pub Date : 2025-01-07 DOI: 10.1109/OJUFFC.2025.3525767
{"title":"IEEE OPEN JOURNAL OF ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL","authors":"","doi":"10.1109/OJUFFC.2025.3525767","DOIUrl":"https://doi.org/10.1109/OJUFFC.2025.3525767","url":null,"abstract":"","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"4 ","pages":"C2-C2"},"PeriodicalIF":0.0,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10832403","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142938156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信