Zhiyang Chen;Hongwei Jiang;Jiapeng You;Xin Wang;Poly Z. H. Sun
{"title":"RFID Lightweight Authentication Mechanism for Smart Factories Based on Blockchain","authors":"Zhiyang Chen;Hongwei Jiang;Jiapeng You;Xin Wang;Poly Z. H. Sun","doi":"10.1109/JRFID.2024.3356194","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3356194","url":null,"abstract":"With the deepening exploration of Industry 4.0, smart factories are gradually replacing traditional factories with rapid momentum. In smart factories, a large number of digitally networked devices are deployed in a less-populated or even unmanned environment. Data security and fast access have become particularly important due to the automation and intelligence of production. As the environment of smart factories becomes increasingly complex, meeting the requirements for rapid authentication has become increasingly difficult for traditional authentication systems. In this study, a lightweight blockchain-based radio-frequency identification (RFID) identity authentication mechanism is proposed for smart factories represented by the medical device manufacturing industry by integrating blockchain and RFID technologies. Through bitwise operations, cyclic shift operation, and hash arithmetic, the proposed mechanism cannot only guarantee security between the RFID reader and the electronic tag but also requires less communication and storage to complete authentication. Thus, this mechanism is suitable for the environment of medical device manufacturing factories with a high-load operation of equipment. It helps further research on the data security of smart factories.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"19-30"},"PeriodicalIF":0.0,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139732021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adaptive Variable Universe Fuzzy Sliding-Mode Control for Robot Manipulators With Model Uncertainty","authors":"Ruhua Zhao;Junjie Yang;Xue Li;Hong Mo","doi":"10.1109/JRFID.2024.3355214","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3355214","url":null,"abstract":"The inaccuracy of modeling information and external disturbance bring great challenges to the control of robot manipulators. In the paper, an adaptive control strategy of robot manipulators with model uncertainty is presented by synthesizing variable universe fuzzy control (VUFC) and the sliding-mode control (SMC). The strong robustness of SMC overcomes the interference of uncertainty to the system,but brings the problem of chattering. In order to effectively alleviate chattering which is easy to occur in traditional SMC, the VUFC technology is adopted to improve the switching control and designs a dynamic variable switching control portion, which suppress the chattering significantly. Then, a suitable adaptive law is given, and the stability of the system is analyzed by utilizing Lyapunov theorem, which ensure that the system error can converge to near zero. Finally, the comparison results show that this control strategy possesses a better performance than SMC and the fuzzy SMC, which can continuously and stably achieve tracking control.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"658-664"},"PeriodicalIF":2.3,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Computational Experiments and Comparative Analysis of Signal Detection Algorithms in Vehicular Ad Hoc Networks","authors":"Yi Li;Conghui Hao;Yupei Xie;Shuangshuang Han","doi":"10.1109/JRFID.2024.3355298","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3355298","url":null,"abstract":"In the era of rapid development of vehicular ad hoc networks (VANETs), ensuring the reliability and security of vehicle-to-vehicle communication has become a top priority. This paper comprehensively analyzes the performance of various signal detection algorithms in different scenarios. To intelligently choose different signal detection algorithms in the context of VANETs, the study covers diverse scenarios such as urban environments, rural areas, highways, parking lots, and mountainous regions, aiming to capture subtle variations in the performance of different signal detection algorithms across these scenarios. The paper employs strict performance metrics, such as bit error rate and algorithmic complexity, to quantify and compare the performance of different signal detection algorithms. The focus is on the role of signal detection algorithms in achieving parallel intelligence in VANETs, including the simultaneous processing of signals from multiple vehicles to enhance overall network efficiency and reliability. This research holds significance by providing insights into the strengths and limitations of signal detection algorithms in VANETs, guiding their development for efficient and accurate performance, thereby contributing to academic understanding and informing decision-making in the automotive industry and intelligent transportation systems.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"402-411"},"PeriodicalIF":0.0,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140924702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Circular Slot-Based Microstrip Circularly Polarized Antenna for 2.45-GHz RFID Reader Applications","authors":"Amit Birwal;Kamlesh Patel;Sanjeev Singh","doi":"10.1109/JRFID.2024.3354515","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3354515","url":null,"abstract":"The paper presents a new design for a mobile 2.45-GHz passive Radio Frequency Identification (RFID) reader, featuring a compact, broadband, and circularly polarized antenna. The antenna proposed consists of two stacked square patches separated by an air gap for a wide-band impedance bandwidth. The antenna is printed on a double-sided 1.6 mm FR4 substrate with an overall dimension of \u0000<inline-formula> <tex-math>$65times 65times 11.27$ </tex-math></inline-formula>\u0000 mm3. By introducing and optimizing a pair of symmetrical ring slots in both the square patches, a good Axial-Ratio Bandwidth (ARBW) and symmetrical broadside radiation patterns are achieved. The reader antenna shows a measured \u0000<inline-formula> <tex-math>$S_{11}$ </tex-math></inline-formula>\u0000 bandwidth (S11<−10 dB) from (2.3–2.7 GHz) and ARBW (< 3 dB) from (2.39-2.48 GHz). The peak gain of the proposed antenna is 6.2 dBi and is obtained at the center frequency of 2.45 GHz. Measurements of the proposed antenna are discussed to obtain the read range and field of view, which confirms its suitability for RFID Reader Applications and other Internet of Things (IoT) based applications.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"10-18"},"PeriodicalIF":0.0,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139676318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nadeem Rather;John L. Buckley;Brendan O’Flynn;Melusine Pigeon;Roy B. V. B. Simorangkir
{"title":"A Design Methodology for Sensing-Ready Concentric Rings-Based Chipless RFID Tags With Effective Spectrum Use and High Coding Capacity","authors":"Nadeem Rather;John L. Buckley;Brendan O’Flynn;Melusine Pigeon;Roy B. V. B. Simorangkir","doi":"10.1109/JRFID.2024.3351678","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3351678","url":null,"abstract":"This paper introduces an innovative strategy for the development of sensing-ready concentric rings-based chipless radio frequency identification (CRFID) tags. Our approach is marked by the novel use of exponentially increasing spacing, a significant departure from the conventional uniform spacing method. This innovative design results in an impressive 88.2% improvement in tag data encoding capacity compared to traditional designs. Importantly, our design framework not only advances the current state of CRFID tag technology but also methodically lays the foundation for future integration of high-resolution sensing capabilities. This is achieved by strategically utilizing the innermost ring as a prospective sensing site, complemented by the implementation of nulls for data encoding achieved through the addition of an extra ring at the tag’s outermost edge. Notably, all these features represent advancements that have not been demonstrated in previously published concentric rings-based CRFID tags. To empirically validate our methodology, we have developed and tested 18-bit example tags optimized for operation within the ultrawideband (UWB) spectrum, covering a range from 3.1 to 10.6 GHz. The radar cross-section (RCS) response of these tags exhibits well-distributed resonances, culminating in a high encoding capacity of 17.65 bits/\u0000<inline-formula> <tex-math>$lambda ^{2}$ </tex-math></inline-formula>\u0000/GHz. Preliminary results using capacitors connected to the innermost ring underscore the future sensing potential of our tags, setting the stage for more advanced sensing implementations in subsequent research.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"10-18"},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10384723","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139654721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Brain Tumor MRI Segmentation Method Based on Improved Res-UNet","authors":"Xue Li;Zhenqi Fang;Ruhua Zhao;Hong Mo","doi":"10.1109/JRFID.2023.3349193","DOIUrl":"https://doi.org/10.1109/JRFID.2023.3349193","url":null,"abstract":"Automatic segmentation of MRI images is crucial for diagnosis and evaluation of brain tumors. However, significant variability in brain tumor shape, uneven spatial distribution, and intricate boundaries bring challenges, which lead information loss and decreased accuracy during segmentation. To solve these problems, an improved Res-UNet network employing attention-guided and scale-aware strategies is proposed. First, a module that employs attention mechanisms and features fusion is incorporated to catch relatively important contextual information. Secondly, a module designed to retrieve hidden contextual information and dynamically aggregate multi-scale features is integrated into the bottom layer of the network, which facilitates feature acquisition and enhancement at multiple scales. Finally, the results show that the method achieves a Dice similarity coefficient of 92.24% in whole tumor region, which is an improvement of about 4% compared to the pre-improved Res-UNet network.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"652-657"},"PeriodicalIF":2.3,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Battery-Free NFC Sub-ppm Gas Sensor for Distributed Gas Monitoring Applications at Room Temperature","authors":"Foad Salehnia;Antonio Lazaro;Ramon Villarino;Marc Lazaro;Nicolas Canyellas;Xavier Vilanova;Eduard Llobet;David Girbau","doi":"10.1109/JRFID.2023.3344636","DOIUrl":"https://doi.org/10.1109/JRFID.2023.3344636","url":null,"abstract":"This work proposes a low-cost battery-less near-field communication (NFC) tag for gas sensing based on a resistive gas sensor. A proof-of-concept tag is designed using commercially available off-the-shelf (COTS) components. The energy required for the tag operation comes from the magnetic field generated by the reader, and all the electronics are powered by connecting them to the energy-harvesting output of the NFC integrated circuit. Read ranges up to 25 mm have been obtained with commercial NFC-enabled smartphones. The reading of resistance variations due to the presence of gas is performed using a low-consumption timer. The oscillation frequency of this timer depends on the resistance of the gas sensor and is measured by a microcontroller integrated into the tag. This method does not require any gain adjustment for operation, allowing the use of sensors with different resistance ranges. Low-cost room temperature sensors have been integrated for NO2 detection in both ppb and ppm ranges using laser-induced graphene (LIG). A detection limit of up to 36 ppb has been achieved. The smartphone transmits the data to a cloud database, allowing users to analyze and post-process the information.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"7 ","pages":"630-643"},"PeriodicalIF":0.0,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139060208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE Council on RFID","authors":"","doi":"10.1109/JRFID.2022.3231053","DOIUrl":"https://doi.org/10.1109/JRFID.2022.3231053","url":null,"abstract":"","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"7 ","pages":"C3-C3"},"PeriodicalIF":0.0,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10359148","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138633935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On-Metal UHF Tag Antenna Design Using Concentric Step-Impedance Rings","authors":"Muthukannan Murugesh;Eng-Hock Lim;Pei-Song Chee;Fwee-Leong Bong","doi":"10.1109/JRFID.2023.3339714","DOIUrl":"https://doi.org/10.1109/JRFID.2023.3339714","url":null,"abstract":"A compact planar tag antenna, which is designed using two closely placed concentric step-impedance rings, is presented for metal-mountable applications in the UHF RFID passband. The tag antenna can be easily constructed using a flexible polyimide and a foam substrate with a dimension of 40 mm \u0000<inline-formula> <tex-math>$times40$ </tex-math></inline-formula>\u0000 mm \u0000<inline-formula> <tex-math>$times3.32$ </tex-math></inline-formula>\u0000 mm (\u0000<inline-formula> <tex-math>$0.122lambda times 0.122lambda times 0.010lambda$ </tex-math></inline-formula>\u0000). Narrowing the line width of the rings are found to be useful for increasing the antenna resistance and reactance, and a conjugate matching condition is achievable between the antenna and the microchip. The proposed tag antenna can read a maximum read distance of \u0000<inline-formula> <tex-math>$sim 15$ </tex-math></inline-formula>\u0000 meters with an effective isotropic radiated power of 4 W. In this design, the two intercoupled stepped-impedance rings are cascaded concentrically. An inductive stub is utilized for bringing down the tag resonant frequency. A transmission line model has been constructed to design the tag antenna, and a detailed analysis has been performed to understand the resonance properties. It is important to note that the proposed tag antenna’s operating frequency is stable, and it is not easily altered by the backing metallic object.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"7 ","pages":"621-629"},"PeriodicalIF":0.0,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138822043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maja Škiljo;Toni Perković;Zoran Blažević;Petar Šolić
{"title":"Performance Analysis of Antenna-Based Soil Sensing","authors":"Maja Škiljo;Toni Perković;Zoran Blažević;Petar Šolić","doi":"10.1109/JRFID.2023.3338776","DOIUrl":"https://doi.org/10.1109/JRFID.2023.3338776","url":null,"abstract":"This work deals with the soil moisture estimation based on received signal strength using low-power LoRa-based soil moisture sensing device. The proposed antenna design is a type of printed inverted F antenna and tuned with a capacitor in the loamy ground with varying properties. The electric field simulation results are given to depict its distribution above the ground with varying moisture content, and the measurements results give the comparison between the proposed printed antenna and the helical LoRA antenna. In the laboratory measurements, it is shown that a difference of approximately 13 dB between the dry and the highest moisture level (40 %) can be achieved in simulations, whereas in measurements, where the signal strength difference is measured from 10 % to 50 %, the difference is 6–7 dB. The proposed antenna tuned in an actual and very lossy soil, achieves very wide bandwidth and consequently less sensitivity to the soil moisture variation. Still it achieves somewhat better results of soil moisture estimation in relation to the conventional helical LoRa antenna. Generally, the results imply that this approach can be most effective in summer period, when smart irrigation is crucial due to droughts, sudden downfalls and the necessity of water consumption management.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"68-75"},"PeriodicalIF":0.0,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140818765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}