Large Language Model-Powered Digital Traffic Engineers: The Framework and Case Studies

IF 2.3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Xingyuan Dai;Yiqing Tang;Yuanyuan Chen;Xiqiao Zhang;Yisheng Lv
{"title":"Large Language Model-Powered Digital Traffic Engineers: The Framework and Case Studies","authors":"Xingyuan Dai;Yiqing Tang;Yuanyuan Chen;Xiqiao Zhang;Yisheng Lv","doi":"10.1109/JRFID.2024.3452473","DOIUrl":null,"url":null,"abstract":"This paper presents a novel Digital Traffic Engineers (DTEs) framework, leveraging Large Language Models (LLMs) to intelligently interpret human language and automate the creation of traffic control strategies. This advancement eliminates the need for manual scheme creation, reducing the workload of human traffic engineers (HTEs) and significantly improving the efficiency from requirement to control scheme generation. Experimental results in scenario understanding and traffic control underscore the potential of DTEs to effectively perform tasks traditionally managed by HTEs. This synergy between HTEs and DTEs not only streamlines traffic management processes but also paves the way for more adaptive, responsive, and environmentally friendly urban transportation solutions.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"780-787"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of radio frequency identification","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10660467/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel Digital Traffic Engineers (DTEs) framework, leveraging Large Language Models (LLMs) to intelligently interpret human language and automate the creation of traffic control strategies. This advancement eliminates the need for manual scheme creation, reducing the workload of human traffic engineers (HTEs) and significantly improving the efficiency from requirement to control scheme generation. Experimental results in scenario understanding and traffic control underscore the potential of DTEs to effectively perform tasks traditionally managed by HTEs. This synergy between HTEs and DTEs not only streamlines traffic management processes but also paves the way for more adaptive, responsive, and environmentally friendly urban transportation solutions.
大型语言模型驱动的数字交通工程师:框架与案例研究
本文介绍了一种新颖的数字交通工程师(DTEs)框架,该框架利用大型语言模型(LLMs)来智能解释人类语言,并自动创建交通控制策略。这一进步消除了人工创建方案的需要,减少了人类交通工程师(HTE)的工作量,并显著提高了从需求到控制方案生成的效率。在场景理解和交通控制方面的实验结果凸显了 DTE 有效执行传统上由 HTE 管理的任务的潜力。人类交通工程师和数字交通工程师之间的协同作用不仅简化了交通管理流程,还为制定更具适应性、响应性和环保型的城市交通解决方案铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信